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Preface

These notes are the offspring of an attempt to organize my handwritten notes for the
course on Galois theory, as given in the first half of Algebra 2 at IMPA. There are
numerous excellent books and lecture notes available on the topic, and these notes do
not cover other material than what appears in most of these sources.

The only particularity of this course is that it is taught in the limited time of around
two months (it takes me 16 lectures of 90 minutes each), followed by an immediate
mid-term exam. Therefore these notes present a fast approach towards the central topics
of Galois theory, which are the solution of the classical problems about constructibility
and the impossibility to solve the general quintic equation, while leaving some other
important topics to the end of the lecture.

I have included all the exercises that I use for the weekly homework at the end of the
corresponding chapters. At the very end, there is a list of further exercises that I hand
out for the exam preparation.

Acknowledgements: I thank Eduardo Santos Silva and Marcel de Sena Dallagnol for
their feedback on previous versions of this text.






Chapter 1

Motivation

1.1 Constructions with ruler and compass

The mathematics of ancient Greece included the knowledge of the (positive) natural
numbers, ratios of positive natural numbers, square roots, and certain other numbers.
The main approach to numbers was in terms of distances that arise from constructions
with ruler and compass, and some famous and long standing problems concern the
constructability of certain quantities.

Question: which numbers are constructible with ruler and compass?

Constructibility with ruler and compass are defined by the following rules: given
(constructed) points 0,1, Py,..., P, in the plane R?, we call a point Q constructible
from P, ..., P, if it can be derived using the following operations:

(1) draw a line through two constructed points;

(2) draw a circle around a constructed point whose radius equals the distance between
two contructed points;

(3) call the intersection points of lines and circles contructed points.

A (positive real) number is constructible if it occurs as a distance between two points
in the plane that are constuctible from O and 1.

In the following, we will explain certain constructions with ruler and compass.

Coordinates: given 0 and 1

e
—_

step 1: draw a line

—0

e
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step 2: draw circles of radius 1

AAAAN
\AAAAS

step 3: draw two circles with radius 2 around 1 and —1; connect the intersection points:




1.1. Constructions with ruler and compass

step 4: more circles with radius 1:

Observation: In particular, this shows how to construct orthogonal lines. It follows that
it is equivalent to know a point P in R? and its coordinates x and y:

P

— @

Thus it is equivalent to talk about constructible points P in the plane and constructible
(positive) real numbers x,y € R>¢. The constructions of x and y from P, and vice versa,
are left as an exercise.

Arithmetic operations: given

0 1 y X

we can construct the following quantities.

x+y:

=) J
=0
~
=
+
<
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xX—y:
@
0 X—Yy y X

x-y:

x/y:

AH

0 1 y
Ax

0 1 y

Conclusion: the length of constructible numbers and their additive inverses form a
subfield of R. But there are more arithmetic operations that can be performed by

constructions.
-1 0 x—1 X
2

Vx:

AS)
+
<
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0 1

Euclid constructs regular n-gons for all n > 3 of the form 2" -3/-5/ with r > 0 and
i,j € {0, 1}. For example, the regular hexagon can be constructed as follows:

Problems of the antique:
(1) Double the cube: given a cube with volume V and side length a € R+, can we
construct a cube with volume 2V, i.e. its side length b = V2 -a?

(2) Trisect an angle: given an angle ¢ (i.e. a point on the unit circle), can we construct
the angle ¢ /3?

(3) Square the circle: given a circle with area A (and radius r), can we construct a
square with area A, i.e. its side length a = \/7r?

(4) For which n > 3 is it possible to construct a regular n-gon?

Some answers:

| Gauf |
1777 Abel 1855
* 1§02 Galois T15{;29
1 én Wantzel T12{332
* 12;14 Tlé48

GauB 1796: Construction of the regular 17-gon.
Wantzel 1837:
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e Construction of the regular 257-gon and 65537-gon;
e /2 is not contructible;

e trisecting an angle is in general not possible.

Lindemann 1882: 7 is “transcendental” = not constructible = squaring the circle is
impossible.

1.2 Equations of low degrees

Degree 2: The equation aX? + bX + ¢ = 0 has two solutions

—b++/b?—4ac
2a

X =

Degree 3: Ferro and Tartaglia had formulas to solve cubic equations, but kept them
secret. Such a formula was first published by Cardano in his Ars Magna in 1545. Gieven
a cubic equation

aX>+bX*+cX+d = 0,

we can replace X by ¥ = X — b/3a and obtain
Y34pY+g =0

for some p and g. Suppose that A = > /4 + p> /27 > 0. Then there exists a real solution

Y = i/—q/Z—i—\/Z—i— i/—q/Z—\/Z.

Degree 4: A formula for solving quartic equations was found by Cardano’s student
Ferrari, and it was also published in Ars Magna.

Degree 5: Much effort was done to find a Formula for solving quintic equations. Ruffini
(1799) gave a first, but incomplete proof of that this was not possible. The first complete
proof was given by Abel (1824). Wantzel (1845) clarified this proof, using Galois theory.

1.3 What is Galois theory?

Galois theory is a method to study the roots of polynomials f = T" 4 c,_1T" ' +---+¢o
with coefficients in a field K.

Fact: There is a smallest field L containing K and all roots of f. This field and the roots
of f can be studied with Galois theory. Let

Autg(L) { oLl ’ o bijective, o(a) =aforalla € K, }
K = :

ola+b)=oc(a)+0a(b), o(a-b)=0c(a)-o(b)

and [L: K] = dimg L.
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Definition. Let [L : k] be finite. The field L is Galois over K if #Autg (L) = [L: K]. In
this case, Gal(L/K) := Autg(L) is called the Galois group of L over K.

Theorem 1.3.1 (Galois, 1833). Let L be Galois over K and G = Autk(L). Then the
maps

{ intermediate fields K CE C L } &L { subgroups H < G }
E — Autg (L)
L ={aclLlo(a)=aforallc cH} <— H

are mutually inverse bijections. Moreover, E is Galois over K if and only if Autg (L) is
a normal subgroup of G.

With this theory, we are able to understand the answers from the previous sections.

1.4 Exercises

Exercise 1.1. Let P be a point in R? with coordinates x and y. Show that P is con-
structible from a given set of points 0, 1, P,. .., P, if and only if x and y are constructible
(considered as points (x,0) and (y,0) of the first coordinate axis in R?). Conclude that
the point P; + P> (using vector addition) is constructible from 0, 1, P;, P>.

Exercise 1.2. Let r be a positive real number. Show that 4 = +/r is constructible from 0,
1 and r.

Hint: Use classical geometric theorems like the theorem of Thales or the theorem of
Pythagoras.

Exercise 1.3. Construct the following regular n-gons with ruler and compass:
(1) aregular 2"-gon for r > 2;
(2) aregular 3-gon;
(3) aregular 5-gon.

Exercise 1.4. Prove Cardano’s formula: given an equation x> + px + ¢ = 0 with real
coefficients p and ¢ such that A = ¢ /4 + p® /27 > 0, then

Exercise 1.5. Find all solutions for x* —2x> —2x—1 = 0.

1s a solution.

Hint: Use Ferrari’s formula.
Exercise 1.6 (very difficult). Find solutions to the following classical problems:

(1) Given a positive real number r, is it possible to construct the cube root /r?
(2) Given an angle ¢, is it possible to construct ¢ /3?

(3) Given a circle with area A, is it possible to construct a square with area A?






Chapter 2

Algebraic field extensions

2.1 Algebraic extensions
Definition. (1) A field extension is an inclusion K < L of a field K as a subfield of
a field L. We write L/K.
(2) The degree of L/K is the dimension

L : K] = dimg L

of L as a K-vector space.

(3) Anelement a € L is algebraic over K if it satisfies a nontrivial equation of the
form
cpd" + -+ cla+co =0

with ¢, ...,c, € K. Otherwise a is called transcendental over K.
(4) L/K is algebraic if every a € L is algebraic over K.
Example. (1) K/K is algebraic.
(2) Q(v/2)/Q s algebraic.
(3) C/R is algebraic.
(4) R/Q is not algebraic.

Definition. Let L/K be a field extension. The unique K-linear ring homomorphism

eve: K[T] — L
[ eva(f) = fla)

that sends 7 to a € L is called the evaluation map at a. Since K[T] is a principal ideal
domain, ker(ev,) = (f) for some f € K[T|. We call this f the minimal polynomial of
a if it is monic, i.e. if its leading coefficient is 1, and we write f = Mipo,,.

Remark. (1) fisuniquely determined up to a multiple by some b € K*. Thus Mipo,
is unique.

13
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(2) Since K[T]/(f) C Lis an integral domain, (f) is a prime ideal. Thus f =0 or f
is prime and thus irreducible (K|[T'| is a UF D).

(3) The map
M,: L — L
b — ab

is K-linear. If [L : K] < oo, then the minimal polynomial of M, equals Mipo,.
(This is an exercise on List 2).

(4) A K-linear ring homomorphism F : Ry — R, between two rings that contain K
fixes K, i.e. f(a) = a forevery a € K.

Lemma 2.1.1. Let L/K be a field extension and a € L. Then a is algebraic over K if
and only if ker(ev,) # 0.

Proof. Assume that ker(ev,) = (f) # 0, i.e. f =Y ¢;T' # 0. Then
0 =evy(f) = Zc,-eva(T)i = ZCiai,

i.e. a is algebraic over K.

If ker(ev,) =0, then ev, : K[T| — Lis injective. This means that {1,a,...,d",...} C
L is linearly independent over K. Therefore a does not satisfy any algebraic relation
over K, i.e. a is transcendental over K. O

Lemma 2.1.2. IfL/K is of finite degree n = [L : K|, then L/K is algebraic.
Proof. Leta € L. Then {1,a,...,a"} is linearly dependent over K, i.e.
co+coa+ -+ cpd =0
for some nontrivial ¢; € K. O]
Lemma 2.1.3. Given finite extensions L/E and E /K. Then [L: K| =[L: E]-[E : K.

Proof. Choose bases (x1,...,x,) of E/K and (yi,...,yn,) of L/E where n = [E : K| and
m = [L: E]. Then for a € L, there exist unique 1, ...,y € E such that

a = myr+-+ mYm
andunique b; ; €K (i=1,...,m, j=1,...,n)s.t.
pi = biyxi+ -+ binxy.

Thus

a = Zb,-ijy,-.
i.j

By the uniqueness of the b; j, (x;yi)i=1,...m is a basis for L/K and thus [L: K] =n-m. [

j=1l,...n

Definition. Let L/K be a field extension and ay,...,a, € L.



2.1. Algebraic extensions

15

(1) Klay,...,ay) is the smallest subring of L that contains K and ay, ..., a,. Itis called
the K-algebra generated by ay,...,a,.

(2) K(ay,...,ay) is the smallest subfield of L that contains K and ay,...,a,. Itis
called the field extension of K generated by a1, ...,a,.

Remark. There is a unique smallest such subring / subfield. We have

_ _ _ for some f in
Klay,...,ay) —KCQCLE = {bEL‘b—f(al,...,an) K[Tl,...,Tn]}
E ring, ay,...,a,€E
and
£ ) for some f, g
Kai,...,an) = () E = ({belL|b=""1"""inK(n, .., T,)
 KCECL glar,...,an) with g # 0
E field, ay,...,a,€E

Theorem 2.1.4. Let L/K be a field extension and a € L. The following are equivalent:

(1) ais algebraic over K.
(2) [K(a): K] is finite.
(3) K(a)/K is algebraic.
(4) Kla] =K (a).

Proof. The theorem is clear for a = 0. Assume a # 0.
(1)=-(4): If a is algebraic over K , then (f) = ker(ev,) is a maximal ideal. Thus

Kla] = im(eva) ~ K[T]/(f)

is a field containing K and a. Therefore K[a] = K(a).

(4)=(2): K|a] = K(a) implies that ev, : K[T] — K(a) is surjective. Thus 1,a,...,a""!
form a finite basis of K(a) = Kla] over K where n = deg f = [K(a) : K].

(2)=>(3): This is Lemma 2.1.2.

(3)=(4): If K(a)/K is algebraic, then there is an f = Y .¢;T" € K|[T] for every b €
Kla] — {0} such that

fY =+ +eb ey = 0.
After multiplying with 5"~ /c,,, this yields that
bl = —c; N ep1+cnab+---+cob" ) € Kal.

Thus K[d] is a field, i.e. K[a] = K(a). . .
(4)=(1):If K|a] = K(a), then al= ’ 1 c;a~1 for some ¢; € K. Thus Y ciat—1=0,
i.e. a is algebraic over K. ]

Corollary 2.1.5. If a is algebraic over K, then [K(a) : K] = deg(Mipo,,). O
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Corollary 2.1.6. If L/E and E /K are algebraic, then L/K is algebraic.

Proof. Every a € L has a minimal polynomial f = ¥ ¢;T* with ¢; € E and c¢; algebraic
over K fori=0,...,n. Thus

K C K(co) C K(co,c1) C -+ CK(coy---,¢n) C K(coy-.-,Cn,a)
is a series of finite field extensions by Thm. 2.1.4. By Lemma 2.1.3,
[K(co,...,cn,a): K| = [K(co,...,cn,a): K(co,---,cn)]- - [K(co) : K],
which is finite. Thus K(a)/K is finite and a is algebraic over K by Thm. 2.1.4. O

Remark. Note that there are infinite algebraic field extensions; for example, the exten-
sion L/Q with L = Q(v/2,v/2,...,v/2,...) is algebraic but not finite.

2.2 Algebraic closure
Definition. Let L/K be a field extension, f = ¥ ¢;T" € K[T] and a € L. Then a is called
aroot of f if f(a) =ev,(f) =0.

Lemma 2.2.1. Let f € K[T] be irreducible, L=K[T|/(f) anda=[T| € L. Then ais a
root of f.

Proof. The evaluation map ev, : K[T| — L sends f to 0 by the definition of @ = [T and
L=KI[T]/(f). O

Corollary 2.2.2. Every f of degree > 1 has a root in some finite field extension.

Proof. Since deg f > 1, f has an irreducible factor g. By Lemma 2.2.1, g has a root
a=[T]in L=K]|T]/(f). Since f = gh for some h € K[T],

fla) = evy(f) = eva(g)-evqa(h) = 0. O

Definition. A field K is algebraically closed if every polynomial f € K[T] of degree
> 1 has aroot in K.

Lemma 2.2.3. Let K be an algebraically closed field and f € K[T] of degree n. Then
f=ulll (T — ) for some u,ay,...,a, € K.

Proof. Induction on n = deg f.

n=0: f = u for some u € K.

n>0: Since K is algebraically closed, f has a root a € K, i.e. f € ker(ev,). But also
evy(T —a) =0. Since T — a is irreducible, ker(ev,) = (T —a). Thus f = (T —a)g for
some g € K[T|, and g must have degree n — 1. The claim follows from the inductive
hypothesis. [

Corollary 2.2.4. Let K be an algebraically closed field and L/K algebraic. Then L = K.
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Proof. Let a € L. Since L/K is algebraic, a has a minimal polynomial f € K[T|]. By
Lemma 2.2.3, f = u[](T — a;) for some u,a; € K. Since f is irreducible, f = u(T —ay)
and a =a; € K. [l

Corollary 2.2.5. A field K is algebraically closed if and only if every irreducible poly-
nomial f € K[T] has degree 1.

Proof. “=":1f K is algebraically closed, then f = u[](T — a;) for some u,a; € K. Thus
f irreducible if and only if deg f = 1.

“<": Consider f € K|[T] of positive degree and let f = []g; be a factorization into
irreducible polynomials g;. Then degg; = 1, i.e. g; = u;(T — a;) for some u;,a; € K.
Thus q; is a root of g; and consequently of f. [

Theorem 2.2.6. Every field K is contained in an algebraically closed field L.

Proof. Set Ly = K. We define a series of field extensions L; of K (i > 0).
Given L;, we construct L; 1 as follows. Define a set of symbols

Si = {Xr|f € Lj[T] of degree >1}.
Then for g = Y ¢;T" € L;[T),

8(Xy) = Y X, €LS] = Li[X,|g € Li[T] of degree > 1].

Claim 1: ] = (g(X,)|degg > 1) is a proper ideal of L;[S;].
Assume that I = L;[S;]. Then

1 = hlgl(Xgl) + - +hngn(Xgn>

for some gi,...,g, € L;[T] of degree > 1 and some hy,...,h, € L;[S;]. By Corollary
2.2.2, there is a finite field extension E /L; such that every g; has a root a; in E. Define
the L-linear ring homomorphism

X Li[Si] — E.
ng — a;
Xy > 0 forfé{gr....&n}

Then
1= x(1) = Y x(h)x(g(Xg;)) = 0,
—
=gj(aj)=0
which is a contradiction. Thus Claim 1. ¢
Let m be a maximal ideal of L;[S;] that contains m. We define L; | = L;[S;]/m. Note

that the map
Li — Li[Si] — Li[Si]/m = Liy

is a field extension, and that every polynomial g € L;[T] of positive degree has the root
[X,] in L; since g(Xg) € I C m.
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Claim 2: L = | J;>(L; is an algebraically closed field.

It is clear that L is a field since for all x,y € L, there exists an i such that x,y € L;. Thus
also x+y,x —y,xy,x/y € L; C L (provided y # 0).

Let f =Y. ¢;T' € L[T] be of positive degree. Then cq, ... ,c, € L;[T] for some i. Thus
fhasaroota € L;; C L. Thus Claim 2. ¢ O

Lemma 2.2.7. Let E /K be an algebraic field extension. Every field homomorphism o :
K — L into an algebraically closed field L extends to a field homomorphism og : E — L:

L

Proof. Consider the set 8 of pairs (F /K,or) where K C F C E is an intermediate field
and of : F — L extends 0. We define a partial order on &:

(F/K,or) < (F'/K,op) if FCF andop|p=oF.
Then every chain
(FI/K;UI)<(FZ/K702>g"'<(E/K;O-i)<"'

has the upper bound (F /K,oF) where F = | JF; and o : F — L is defined by or|r, = 0;.
By Zorn’s lemma, 8 has a maximal element (F /K, oF).
Thus we have

Claim: F =E.

If F # E, then there is an a € E — F, which is algebraic over F. Let f be the minimal
polynomial of a, i.e. (f) = ker(ev,). Then there exists a root b of o(f) in L, i.e. f is in
the kernel of evy, : K[T] — L. Thus (f) C ker(ev;,) and we get

OF(a)

L,

evaT

F[T

l

F(a)
]

oF

which is an extension of of to o (,) : F(a) — L, which contradicts the maximality of
(F/K,oF). O
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Definition. An algebraic closure of a field K is an algebraic field extension L/K where
L is algebraically closed. We often denote an algebraic closure of K by K.

Theorem 2.2.8. Every field K has an algebraic closure K /K, and any two algebraic
closures of K are isomorphic.

Proof. Existence: By Theorem 2.2.6, there exists a field extension L/K with L alge-
braically closed. Define
K= |J E

KCECL
E /K algebraic

which is an algebraic extension of K. If f € K[T] C L[T] is of positive degree, then f
has a root a € L. Thus a is algebraic over K and by Corollary 2.1.6, a is algebraic over
K. Thus a € K, which shows that K is algebraically closed.

Uniqueness: Let L/K be another algebraic closure of K. By Lemma 2.2.7, there exists a
field homomorphism ¢ : L — K that extends the inclusion K — K. Thus o identifies L
with an algebraically closed subfield (L) of K. By Corollary 2.2.4, K /o (L) is trivial,
i.e. 0 : L — K is an isomorphism of fields. [

2.3 Exercises

Exercise 2.1. Let L/K be a field extension and a € L algebraic over K. Let f(T) € K[T]
be the minimal polynomial of a over K. Show that the minimal polynomial of the
K-linear map
M,: L — L
b — a-b

is equal to f.

Exercise 2.2. Let L/K be a finite field extension. Then there are elements ajy,...,a, € L
such that L = K(ay,...,ay).

Exercise 2.3. Let L/K be a field extensionand a1, ..., a, € L. Show thatK(ay,...,a,)/K
is algebraic if and only if ay,...,a, are algebraic over K.

Exercise 2.4. Consider the following elements v/2 and (3 as elements of an algebraic
closure of Q.

(1) Show that v/2 is algebraic over Q and find its minimal polynomial. What is the
degree [Q(¥/2) : Q]?

(2) Let (3 = ¢*™/3 be a primitive third root of unity, i.c. an element # 1 that satisfies
Cg’ = 1. Show that (3 is algebraic over Q and find its minimal polynomial. What

is the degree [Q((3) : Q]?
(3) What is the degree of Q(+/2,(3) over Q?
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Exercise 2.5. Show that every field K contains a unique smallest subfield Ky. Show that
if char K = 0, then K is isomorphic to QQ, and if char K = p > 0, then K is isomorphic
tolF, =Z/pZ.

Remark: The subfield Ky is called the prime field of K.
Exercise 2.6. Proof Fermat’s little theorem: If K is a field of characteristic p, then

(a+b)P = aP + bP. Conclude that Frob, : K — K with Frob(a) = a”" is a field
automorphism of K.

Remark: Frob,, is called the Frobenius homomorphism in characteristic p.

Exercise 2.7. Let a,b € R. Show thata > b if and only if a —b = ¢? for some ¢ € R.
Conclude that the only field automorphism o : R — R is the identity map.

Exercise 2.8. Recall the proofs of the Eisenstein criterium and Gauss’ lemma, i.e. the
content of fg equals the product of the contents of f and g for polynomials f, g over a
unique factorization domain.
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Galois theory

3.1 Normal extensions

Definition. Let L/K be a field extension and f € K[T|. Then f splits over L if f =
ull(T —a;) in L[T].

Definition. Let {f;};c; be a subset of K[T|]. A splitting field of {f;} over K is a field
extension L/K such that f; splits over L for every i € I and such that L is generated over
K by the roots of all the f;. If S = {f}, then we say that L is a splitting field of f over
K.

Remark. Given a finite subset {fi,..., f,} of K[T], a field extension L/K is a splitting
of {f1,...,fn} over K if and only if it is a splitting field of the product f; - - f, over K.

Proposition 3.1.1. Let K be an algebraic closure of K and {f;} C K[T). Let

deg f;
fi = uwi [T (T —aix)
k=1
be the factorizations over K. Then K (a; ) is a splitting field of { f;} over K.
If L/K is any other splitting field and o : L — K a K-linear field homomorphism,
then o (L) = K(a; ). In particular any two splitting fields of { fi} over K are isomorphic.

Proof. It is clear that K(a; ) is a splitting field of {f;} over K. Let L/K be another
splitting field of { f;} and f; = v;[I(T — b;x) the factorization in L[T]. Since

deg f; deg f;
vi [1(T—aix) = fi = o(fi) = o) [T (T —0o(bir)),
k=1 k=1

and K (a;x)[T] is a UFD, we have {o(b;x)} = {a;}. Thus the image of
oc: L = K(bi7k) — K

is K (a,~7k).

Given any splitting field L of { f;} over K, there exists a K-linear field homomorphism
o : L — K by Lemma 2.2.7. Thus the previous claims imply that every splitting field of
{fi} over K is isomorphic to K(a; x). O

21



22

Galois theory

Definition. A field extension L/K is normal if it is algebraic and if every irreducible
polynomial f € K[T] with a root a € L splits over L.

Theorem 3.1.2. Let L/K be an algebraic field extension. The following are equivalent:

(1) L/K is normal.
(2) L is a splitting field of a family { f;} of polynomials f; € K[T].

(3) For every field extension E /L, the image of a K-linear field homomorphism
o:L—EisL

(4) Every K-linear field homomorphism o : L — L has image (L) = L.

Proof. (1)=-(2): Consider { f,}4c1 where f, is the minimal polynomial of a over K.
Then f, splits over L by (1) and L = K|a|a € L]. Thus (2).

(2)=-(3): Let L be the splitting field of { f;} over K. Since L/K is algebraic, the image
of a K-linear o : L — E is contained in E’ = {a € E|a algebraic over L}, which is an
algebraic extension of K. Thus there is an embedding 7 : E’ — K. By Proposition 3.1.1,
K contains a unique splitting field F of {f;}. Thus 7(c(L)) = F = 7(L) and o(L) = L.

(3)=-(4): Obvious.

(4)=-(1): Let f € K[T] be irreducible and a € Larootof f. Letb € K be another root
of f. Then we have a field isomorphism

~

o: K(a) — K[T]/(f) — K(b),
a [T] — b

which extends to a homomorphism oy, : L — L by Lemma 2.2.7. By (4), o1(L) = L; thus
b = o(a) € L. Therefore L contains all roots of f, i.e. f splits over L. [l

Corollary 3.1.3. Let K C E C L be a field extensions. If L/K is normal, then L/E is
normal.

Proof. Any E-linear field homomorphism o : L — L is K-linear. Since L/K is normal,
Theorem 3.1.2 implies o (L) = L. Applying 3.1.2 once again to L/E shows that L/E is
normal. [

Definition. Let L/K be an algebraic field extension. A normal closure of L/K is a
splitting field L™™ of { f,}4cr together with an inclusion L — L"™ where f, is the
minimal polynomial of a over K.

Corollary 3.1.4. Let L/K be an algebraic field extension. Then L/K has a normal
closure L™™ and L™™ /K is normal. We have

Lnorm — ﬂ E.

LCECL
E /K normal

Proof. This follows at once from Theorem 3.1.2. ]
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Example. (1) K/K is normal.

(2) Let L/K be of degree 2. If f € K[T] is irreducible with root a € L, then deg f < 2
since K[T]/(f) CL,and T —a divides f. Thus f =u(T —a) or f = u(T —a)(T —
D), i.e. f splits over L. Thus L/K is normal.

(3) Q[v/2]/Q is not normal because
T3 -2 = (T—V2) (T* +V2T + (V2)?)

does not split over Q[v/2].
(4) Similarly Q[v/2]/Q is not normal because

T4 -2 = (T-— \é@)(u :@)(T— ivV2 ) (TH+ iV2),

~—~ ~~
cQ[V2] eQ[V2] ¢Q[V2] ¢Q[ V2]

does not split over Q[v/2].

Note: L/Q[v/2] and Q[v/2]/Q are successive extensions of degree 2 and thus
normal, but L/Q is not. Thus the property to be normal is not transitive in field
extensions.

Remark.

3.2 Separable extensions

Definition. Let K be a field, f € K[T] with factorization f = u[["_ (T —a;) in K[T]
and L/K a field extension.

(1) The polynomial f is separable if ay,...,a, are pairwise distinct.

(2) Anelement a € L is separable over K if it is algebraic over K and if its minimal
polynomial over K is separable.

(3) The extension L/K is separable if every a € L is separable.

Definition. Let f = Y7 ,¢;T" € K[T]. The formal derivative of f is
n .
f=Yiear "
i=1

Lemma 3.2.1. If f is irreducible and not separable, then charK = p > 0 and f =
co+cpTP + cszzl’ + .-
Proof. Consider the factorization f = u[](T — a;) in K[T]. By Leibniz’ formula (exer-

cise!),
fr=u) TIT-a)
=1 jAi
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in K[T]. Since f has a multiple root, say a = a; = a,, we have f’(a) = 0.

Thus the minimal polynomial g of a over K divides f” and f. Since f is irreducible,
f =ug. Since deg /' < degfand f' € (g) = (f), f =0.

This is only possible if char K = p > 0 and all coefficients of f’ = Yi-¢;T'~! are
divisible by p, i.e. ¢; = 0 if i is not a multiple of p. O

Corollary 3.2.2. If char K = 0, then every irreducible polynomial is separable. ]

Definition. Let L/K be an algebraic extension. The separable degree of L/K is the
number
[L:K]; = #{0:L—K|o(a)=aforac K}

of K-linear embeddings

Lemma 3.2.3. Let L/K be an algebraic extension, a € L and f = Y. ¢;T' the minimal
polynomial of a over K. Then [K(a) : K| is equal to the number of roots of f in K.

Proof. A K-linear field homomorphism o : K(a) — K is determined by the image o (a)
of a. Since o leaves K fixed,

flo(a)) = Y cio(a)' = o (Y cid') = a(f(a)) = 0,

i.e. o(a)is arootof fin K.

If conversely, b is a root of f in K, then the minimal polynomial g of b divides f.
Since f is irreducible, f = ug. Since ev;, : K[T] — K has kernel (g) = (f), we obtain a
K-linear homomorphism

o: K(a) = K[T]/(f) =%
a — [T] —

S X

that maps a to b. This establishes a bijection

~ pd
K

o — o(a)

{ K(a) —— K } &L froots of finK 1.

Corollary 3.2.4. We have [K(a) : K|; < [K(a) : K], and an equality holds if and only if
a is separable over K.

Proof. Let f be the minimal polynomial of a. Then
[K(a): K] = #{rootsof finK} < degf = [K(a):K].

We have an equality if and only if all the roots of f are pairwise distinct. This is the case
if and only if f is separable, i.e. if a is separable. ]
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Lemma 3.2.5. Let K C E C L be finite field extensions. Then [L: K|s = [L: E];- [E : K];.

Proof. Consider

_JE—2>E _ 1
S-{ \7 } and T,_{ }

Thus #S = [E : K] and #T; = [L : E|, for all i. Thus

L: K], = #{ L——1L } — YT, = #T;-#S = [L:E);-[E:K],, O
K i

Corollary 3.2.6. Let L=K(ay,...,ay) be a finite extension of K. Then [L: K|; < [L: K],
and equality holds if ay, ... ,a, are separable over K.

Proof. Define K; = K(ay,...,a;) and consider
K=Ky CK C--CK, =L
Since K1 = K;(a;+1), Corollary 3.2.4 implies [K;;1 : Ki|; < [Kit1 : Ki], with an equality

if a;+ is separable over K;, which is the case if a;; is separable over K. By Lemma
3.2.5,

n—1 n—1
IL:K]s = []IKiv1: Ky < []IKiv1:Ki] = [L:K],
i=0 i=0
with equality if ay,...,a, are separable over K. [

Theorem 3.2.7. Let L = K(ay,...,ay,) be a finite extension of K. The following are
equivalent:

(1) L/K is separable.
(2) ay,...,a, are separable over K.
(3) [L:K];=[L:K].
Proof. (1)=(2): Clear.
(2)=-(3): This is Corollary 3.2.6
(3)=-(1): Consider a € L and K C K(a) C L. Then

[L:K(a)|s-[K(a):K]s = [L:K]; = [L:K] = [L:K(a)]-[K(a):K].

Since [—|; < [—] (Corollary 3.2.6), we have [K(a) : K|s = [K(a) : K|. Thus a is separable
over K by Corollary 3.2.4, and L/K is separable. ]

Corollary 3.2.8. Let K C E C L be finite field extensions. Then L/K is separable if and
only if both L/E and E /K are separable.
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Proof. By Theorem 3.2.7, L/K is separable if and only if
[L:E|s-[E:K|s = [L:K]y = [L:K]| = [L:E]-[E:K].

Since [—|s; < [—] (Corollary 3.2.6), this is the case if and only if [L: E]; = [L: E] and
[E : K]s = [E : K]. Using Theorem 3.2.7 once again, this is equivalent with both L/E
and E /K being separable. O

Definition. L/K field extension. The separable closure of K in L is
E = {a € L|a separable over K }.
The separable closure of K is the separable closure of K in K.

Corollary 3.2.9. L/K field extension. The separable closure E of K in L is the largest
subfield of L that is separable over K.

Proof. Letay,a; € E. Thus K(ay,ay)/K is separable by Theorem 3.2.7, and
ay+ay, ay —ap, ay-ay, ay/a; € K(ay,ap) C E

are separable over K. This shows that E is a subfield of L. By the definition of the
separable closure, E is the largest subfield of L that is separable over K. [

Remark. Later we will see that [L : K|; = [E : K|, and thus [L : K|, is a divisor of [L : K].

Theorem 3.2.10 (Theorem of the primitive element).
Let L/K be finite separable. Then there is an element a € L such that L = K(a). The
element a is called a primitive element for L/K.

Proof. K finite: later (Theorem 3.5.1) / exercise.

K infinite: L = K(ay, .. .,a,) for some ay,...,a, € L. Induction on n > 1:
n=1:L=K(a).

n>1:L=K(ay,...,a,-1)(a,). By the inductive hypothesis, K (ay,...,a,-1) = K(b)

for some primitive element b for K(ay,...,a,—1)/K. Thus L = K(a,b) for a = a,.
Let m = [L: K]. Then there are m distinct embeddings

Define
P(T) = [T | (@7 +0i(b)) = (05(@)T + (b)) |
i#]
Since K is infinite, there is a ¢ € K such that P(c) # 0. Thus o} (ac +b),...,om(ac+b)
are pairwise distinct, i.e. [K(ac+b) : K|y > m. Since K(ac+b) C L and [L: K|; = m,
we conclude that L = K(ac + b). O

mzfm

Remark. The proof works also for finite fields if K has more than deg P(T) = "
elements.
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3.3 The Galois correspondence

Definition. Let L/K be a field extension. Then we denote by Autg (L) the group of
K-linear field automorphisms. The extension L/K is Galoeis if it is normal and separable.
In this case, Gal(L/K) = Autg (L) is called the Galois group of L/K.

Definition. Let H C Autg (L) be a subgroup. Then
A = {aeL|o(a)=aforallo € H}
is called the fixed field of H.

Remark. Since o(a*b) =o(a)xo(b)=axbforalla,bc L, 0 € Hand x € {+,—,-,/},
LM is indeed a field. Clearly, K C L¥ C L.

Theorem 3.3.1 (Fundamental theorem of Galois theory). Let L/K be a Galois extension
with Galois group G = Gal(L/K). Then the maps

{KCECL} LN {subgroupsH<G}

E -2, Gal(L/E)
L &, H

are mutually inverse bijections.

A subextension E /K is normal if and only if H = Gal(L/E) is normal in G. In this
case, o v+ ol defines a group isomorphism G/H = Gal(E/K), i.e. we have a short
exact sequence

0 — Gal(L/E) — Gal(L/K) — Gal(E/K) — 0

of groups.

A part of the theorem can be proven directly with our techniques (Lemma 3.3.2),
the rest will be completed at the end of this section, after we have proven a preliminary
result by Artin (Thm. 3.3.3).

Lemma 3.3.2. LC = K and ® is injective.

Proof. Leta € LY and o : K(a) — L a K-linear field homomorphism. Let o7 : L — L be
an extension of o to L, which exists by Lemma 2.2.7. Since L/K is normal, o7 (L) = L,
i.e. or € G. Since 7(a) = a forevery T € G, [K(a) : K|; = 1. Since a is separable over
K,K(a)=K,ie. ac K. Thus L =K.

Let K C E C L be an intermediate field and H = Gal(L/E). Then E = L¥ by what
we have proven. Thus if H' = Gal(L/E') = H, then E' = L"' = [ — E. Thus @ is
injective. [

Theorem 3.3.3 (Artin). Let L be a field with automorphism group Aut(L) and G C
Aut(L) of finite order n. Let K = LC. Then [L : K| = n and L/K is Galois with Galois
group Gal(L/K) = G.
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The proof of this theorem will utilize the following two lemmas.

Lemma 3.3.4. Let L/K be separable and a € L. Define degg(a) = [K(a) : K] =
deg(Mipo,). Then
[L:K] = sup{ degg(a)|acL}.

In particular, [L: K] is finite if there is an n € N such that degg a < n for all a € L.

Proof. Clearly [L: K| > degg(a) foralla € L and [L: K| > n = sup{degg(a)|la € L}.
Thus we can assume that 7 is finite and that there is an a € L with degg(a) = n.

We claim that L = K(a). Consider b € L. Then K(a,b) = K(c) for some c € L by
the theorem of the primitive element (Thm. 3.2.10), i.e.

K C K(a) C K(a,b) = K(c).

Since degg (c) < n, we have [K(c) : K| < n. Thus K(a,b) = K(a), i.e. b € K(a). There-
fore L = K(a) as claimed, and [L : K| = degg(a) = n, which completes the proof. [

Lemma 3.3.5. Let L/K be a finite extension. Then #Autkg (L) < [L: K];, and equality
holds if and only if L/K is normal. In particular, #Autg (L) = [L : K| if and only if L/ K
is Galois.

Proof.

o
purs(t) — {2l

LS L — LSL—L

is injective. This shows #Aurx (L) < [L: K];. We have an equality if and only if every
o : L — L comes from Autg (L), which is the case if and only if (L) = L for all o, i.e.
if L/K is normal. Thus the former claim.

The inequalities in

#Autk(L) < [L:K]; < [L:K]

are equalities if and only if L/K is Galois. Thus the latter claim. ]
Proof of Theorem 3.3.3. Let a € L and {oy,...,0,} a maximal subset of G such that
o1(a),...,or(a) are pairwise distinct. For 7 € G, also Too(a),...,7o0,(a) are pairwise
distinct. By the maximality of {oy,...,0,}, this shows that 7 permutes the o;(a), i.e.
{roo;} ={0oi}.
Thus .
f =11 -0ia)

i~
is separable and 7(f) = f for all 7 € G, i.e. f € K[T|. Since id;(a) = a, a is a root of
f-Thus a is separable over K and degy(a) < n.
By Lemma 3.3.4, [L : K] < n =#G and by Lemma 3.3.5, #Autg (L) < [L: K]. Since
G < Autg(L), we have #Autg (L) = [L : K]. Thus Lemma 3.3.5 implies that L/K is
Galois with Galois group G. ]
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Proof of Theorem 3.3.1. By Lemma 3.3.2, ® is injective. Given H < G, then the exten-
sion L/L is Galois with Galois group H by Theorem 3.3.3. Thus ® and P are mutually
inverse bijections.

If E/K is normal, then o(E) = E for every o € G, which yields a map

n: Gal(L/K) — Gal(E/K).
o — ol

Since every K-linear automorphism 7 : E — E extends to an automorphism 77 : L — L
(Lemma 2.2.7 plus L/K is normal), 7 is surjective. Clearly, Gal(E/K) ={o:L —
L|o|g = idg} is the kernel of 7 and therefore a normal subgroup.

Assume conversely that H </ G is normal. Let o : E — L be a K-linear embedding
with image E’. Then o extends to an automorphism oy : L — L (Lemma 2.2.7 plus L/K
is normal) and restricts to an isomorphism o : E — E’. Since L/K is normal, L/E’ is
normal, cf. Corollary 3.1.3. Let H' = Gal(L/E’). Then we obtain an isomorphism

H — H',
[T:E —>E} — [CTETOEI (E' —>E’}

i.e. H = opHoy' is conjugated to H in G. Since H <|G, H' = H and E' = E. This
shows that E /K is normal and thus Galois. []

3.4 An example

Consider L = QJi, \/5] In this section, we show that L/Q is Galois, determine its Galois
group and intermediate fields.

L/Q is separable since char Q@ = 0 and normal since L is the splitting field of
{T?41,7% -2} over Q:

T2+1 = (T—i)(T+i) and T?>—=2 = (T—V2)(T+V2).

Thus L/Q is Galois.
Q[i] has degree 2 over Q as splitting field of T2+ 1 and L has degree 2 over Q[i] a

splitting field of 72 — 2 (note that v/2 ¢ Q[i]). Thus [L: Q] = [L: Q[i]]- [Q[i] : Q] = 4
and

L = {a+bi+cV2+div2|a,b,c,d €Q}.

We find the following four automorphisms of L

i oj g 9,
L %0 L 7 L L 5 ° L 3 L
i i S S i o =i
V2 — V2 V2 — V2 V2 — =2 V2 — —V2
Since #Gal(L/Q) = [L: Q] = 4 by Lemma 3.3.5, these are all automorphisms of L, i.e.

G =Gal(L/Q) = {id,0i,0 55,0, s} Since each of these automorphisms has order 2,
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we see that G is the Klein four group Z /27 x 7 /27. The diagram of subgroups of G is
G
P N
(oi) (0,/3)
kA

{id.}

<0i7ﬁ>

where the number at an edge indicates the index of the group on the bottom inside the
group on the top of the edge. The fixed fields of the subgroups of index 2 are

L(a,-} _ Q[\/z], L(Uﬁ) — Q[i]v L<‘Ti,ﬁ> _ Q[l\/i],

and we get the following diagram of intermediate fields of L/K:

3.5 Finite fields

Theorem 3.5.1. Let p be a prime number, ¥, = Z /PZ be the finite field with p elements
and ), its algebraic closure.

(1) For every n > 1, there is a unique subfield I\ ofIETp with p" elements, and all
finite subfields of ¥, are of this form.

(2) Fpn CFpm if and only if n|m. In this case, Fyn [IF n is Galois and primitive. Its
Galois group is cyclic of order m/n, generated by

FrObpn: Fpm — Fpnr?l.
a — a(p )

(3) The unit group F;n of Fyn is cyclic of order p" — 1.
Proof. (1): Every finite subfield K C F, contains F, = {0,1,...,p—1}. Thus K is a
IF ,-vector space of positive dimension and thus has p" elements for some n > 1.

Existence of Fjn: Let L C T, be the splitting field of f = T?" — T € F,[T]. Then
f=TI(T — a;) for some a; € L[T].
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Claim: L = {g;}.
Note that f(a) = 0 if and only if a”" = a for a € F,,. We have

" " m_ ot p n_ Pt ot
0" =0, 17 =1, (ai+aj)’ =g +a; =ai+aj, (a;-aj)? =a; ‘a; =ai-aj,

_ n._ _ " - —aj; if p is odd,
@h=@") " =, (' = =g P
ai=—a; ifp=2.

Thus {a;} forms a subfield of F, and L = {a;}. ¢
Since f' = p"T?"~! —1 = —1 has no root in common with £, f has no multiple roots
and #L = deg f = p". We define IF,» = L and note that IF,» /IF, is normal and separable.

Uniqueness of IFjn: Consider L C ]FT, with p” elements. Then L™ is a group with p" — 1

elements and thus a”"~! = 1 for all a € L* (by Lagrange’s theorem). Therefore f (a)=0
for all a € L where f = T?" — T. This shows that L is the splitting field of f and thus
L=TFp.
(2): If Fyn C Fym, then Fm is an Fn-vector space and p™ = (p")? for some d > 1, i.e.
m=dn.

If, conversely, m = dn, then every a € F» satisfies

a’" = (- ((ap”)p”) : ..)p” - a
Thus a € Fpm.
Since [ m / I, is Galois, I ,m / Fpn is s0, too. IF,» has at most one subfield of cardi-
nality p' foreveryi=1,...,m— 1. Since p > 2, we have
m—1
#<]F,,m— U E) >p"—Y p > 1,
ECF ym i=1

i.e. F,m contains an element a that is not contained in any proper subfield. Thus a is a
primitive element for Fm /T .

The Galois group G = Gal(F » /F ) has order [Fm : F,n] =m/n=d, and Frob» €
G (exercise). Let H = (Frob,») < G and e = #H the exponent of Frob,». Then e <d
and (Frob,:(a))® =1 for all a € F;,. This means that a is a root of f = T7" —T,
which has p"¢ different roots in E Thus p" > p™,ie.e >m/n=d.

Therefore #H = e = d = #G, which shows that G = H is cyclic and generated by
Frob,.
(3): Gal(Fn /F,) = (Frob,) is of order n. Thus a*" ! =1 for all a € F,» and for all
k<p'—1,thereisana € IF;" such that a* # 1.

Since IF;,, is finite abelian,

Fo =~ Z/qZ x - x L/q7Z
for some prime powers ¢y, ...,q,. Thus p" —1=g¢q;---q, and

p"—1 = min{k eN|d* =1foralla € Fy,} = lem(qy,...,q,),
which is only possible if g1, ..., g, are pairwise coprime. Thus

Fo =~ Z/qZ x - x L]qZ =~ Z/(p"—1)Z. O
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3.6 Exercises

Exercise 3.1. Let f =T+ T3+ 1€ Q[T] and L = Q[T]/(f). Show that f is irreducible
and find all field homomorphisms L — C. Is L/Q normal?

Hint: f divides T° — 1.
Exercise 3.2. Let FF,(x) be the quotient field of the polynomial ring F, [x] in the indeter-
minant x, i.e. F,(x) = {f/g|f,g € Fp[x] and g # 0}.

(1) Show that f = T? —x is irreducible over [, (x).

Hint: For a direct calculation, use the factorization of f over F,({/x); or you
can apply the Eisenstein criterium to show that f is irreducibel in IF,,[x,T] and
conclude with the help of Gauss’ lemma that f is irreducible in F,(x)[T].

(2) Show that f is not separable over F,(x).
Hint: Use Fermat’s little theorem.
(3) Conclude that F,({/x)/Fp(x) is not separable. Is F,({/x) /F,(x) normal?

Exercise 3.3. Let (3 = ¢2™/3 € C be a primitive third root of unity, i.e. C;’ =1,but (3 # 1.

Which of the field extensions Q((3), Q(+v/2) and Q((3,v/2) of Q are Galois? What
are the respective automorphism groups over Q? Find all intermediate extensions of
Q(¢3,v/2)/Q and draw a diagram.

Exercise 3.4. Let L/K be a finite field extension and E the separable closure of K in L.
Show that [E : K]y = [E : K] and [L : E]; = 1. Conclude that the separable degree [L : K],
is a divisor of [L: K].

Exercise 3.5. (1) Find a finite separable (but not normal) field extension L/K that
does not satisfy the Galois correspondence.

(2) Find a finite normal (but not separable) field extension L/K that does not satisfy
the Galois correspondence.

(3) Find a normal and separable (but not finite) field extension L/K that does not
satisfy the Galois correspondence.

Exercise 3.6.
Calculate the Galois groups of the splitting fields of the following polynomials over QQ.

) A=T3—1;
(2) or=T>-2;
(3) r=T>+T>-2T—1.

Hint: G +§77_i isarootof f3 fori=1,2,3.



Chapter 4

Applications of Galois theory

4.1 The central result

The central result of this chapter is a characterization of field extensions that can be
generated by associating consecutively n-th roots in terms of Galois groups. Thanks to
this characterization, we are able to solve the problems mentioned in Chapter 1. We
need two definitions to state the result where we restrict to characteristic 0 for simplicity.

Definition. A finite field extension L/K of characteristic 0 is a radical extension if
there exists a sequence of subfields

K=Ky C K1 =Kp(a1) C K =Kj(ay) C - C K, =K,—1(an) =L
such that b; = a?, €Ki jforalli=1,...,r and some n; > 1, i.e. b; = %/a;.
Definition. A finite group G is solvable if there exists a sequence of subgroups
{e}=Gp Cc Gy C --- C G,=G
such that G;_; is normal in G; with cyclic quotient G;/G;_| ~Z/n;Z foralli=1,...,r.

Theorem. Let L/K be a finite field extension of characteristic 0 and L™ the nor-
mal closure of L/K. Then L is contained in a radical extension L' /K if and only if
Gal(L"™ /K) is solvable.

4.2 Solvable groups

Definition. A group G is simple if G # {e} and if the only normal subgroups of G are
{e} and G.

Example. Z/nZ is simple if and only if n is prime.

Theorem 4.2.1. The alternating group A,, is simple for n > 5.

33
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Proof. Claim 1: A, is generated by 3-cycles.

We have
An = ((ij)(kl)|i,j k1 €{l,d...,n} withi# jk#1)
and
(ij)(kl) = (ijk)(jkl) if i, j, k[ are pairwise distinct,
(i) (jl) = (iji) if i, j, [ are pairwise distinct,
(ij)(ij)=e &

Claim 2: All 3-cycles are conjugate in A,,.

Consider two 3-cycles (ijk) and (I'j'k’). Let v € S, such that v(i) =7, v(j) = J
and (k) = k'. Then ~(ijk)y~! = (i'j/k'), i.e. (ijk) and i’ j’k') are conjugate in S,. If
v & Ap, then there are [,m such that i, j, k,I,m are pairwise distinct (n > 5). Then
5 =~(l,m) € A, and 5(ijk)7~ ' = (/' j'k') in A,. ¢

Claim 3: Every normal subgroup N # {e} of A, contains a 3-cycle.

Let o # e be an element of N with maximal number of fixed points, which are i €
{1,...,n} with o(i) = i. Since o # e, o has at least one non-trivial cycle (ij...).

Case 1: All orbits of ¢ have length < 2.

Then there are at least two cycles (ij) and (kl) of length 2 since signo = 1. Let
me {l,...,n} —{i,j,k,1} and 7 = (klm). Then

o = ror 1o} e N
EN EN

and /(i) =i o'(j) = j and ¢/(p) = p for all p # m with o(p) = p. Thus ¢’ has more
fixed points than . Contradiction!

Case 2: o has a cycle (ijk...) and i, j, k are not the only non-fixed points.

Then there are distinct /,m € {1,...,n} — {i,j,k} such that o(l) # [ and o(m) # m
(n>5). For 7 = (klm), o' = To7~'o~! € N. We have ¢’(i) = i and all fixed points of
o are fixed points of ¢’. thus ¢’ has more fixed points than o. Contradiction!

Thus o must be a 3-cycle, which proves claim 3. ¢

If N # {e} is a normal subgroup of A,, then it contains a 3-cycle (claim 3), which is
conjugated to all other 3-cycles (claim 2). Since N is normal, A, = (3-cycles) = N
(claim 1). L]

Definition. A normal series (of length r) of a group G is a sequence
{}=Go9G 9+ 4G =G

of normal subgroups G; <1 G;. Its factors are the quotient groups Q; = G;/G;_ for
i=1,...,r. Sometimes we write

Gy G < ---«1G, =G
Ql Qr

O
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A refinement of Gy < --- < G, is a normal series Hy < --- < Hg of G such that
{Gi} C {H;}. A composition series of G is a normal series whose factors are simple
groups.

Remark. A normal series is a composition series if and only if it has no proper refine-
ment.

Example (Decomposition series for A4 and S4). {e} <1A4 <184 is a normal series for Sy,
but not a composition series since {e} <1A4 has the refinement

(e} 2, 1. (264} = (,(12)(34),13)24) (19)23)} 7 A

which is a composition series for A4. In particular, A4 is not simple.

Remark. Every finite group has a composition series, but there are infinite groups
without composition series, e.g. G = Z.

Definition. Two normal series Go <I--- <G, and Hy < --- << Hy of a group G are equiv-
alent if » = s and if their factors agree up to a permutation.

Example.

0} <« {0,3} <« Z/6Z d 0} <« {0,2,4} <« Z/6Z
{}Z/zz{’}mz / an {}Z/%{, }Z/ZZ /

are equivalent normal series.
Theorem 4.2.2 (Schreier). Any two normal series
Go 4 - 4G, and Hy < --- < H;

—

of a group G have equivalent refinements.
Proof. We define
Gi_‘j:Gi,1<GiﬂHj) fori=1,....,r, j=0,...,s
H,'.J':(G,'OH]')H]'_] fori=0,....r, j=1,...,s
and get refinements
Go=G10<G11 << G13=G1 =G0 <...<4 Gy = Gy,
Hy=Hy; < H) <---< H,) =Hy=Hpp <...< H;s = H;.

where some inclusions might not be proper. Using the third isomorphism theorem
“H/(HNN)~HN/N”, we obtain

Gi,j/Gi.,jfl = Gifl(G,'ﬂHj) /Gifl(GiﬂHj,l)
~ ‘N H: CAHMNG AH.
H=GiNHj, N=G; (Gin j)/(Gl 1N J)(Glm j 1)
~ (GinHj)Hj—1 / (Gi_1NH))H;_\ = H;;/H;_1;

H=G,NH;, N=H;_

Thus G <--- <G5 and Hy; <--- <H,; have the same factors and are equivalent
refinements (after removing the non-proper inclusions). ]
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Two immediate consequences are the following.

Corollary 4.2.3. If G has a composition series, then any normal series of G has a
refinement that is a composition series. ]

Theorem 4.2.4 (Jordan-Holder theorem). Any two composition series of G are equiva-
lent. 0

The definition of solvable finite groups from section 4.1 extends to arbitrary groups
as follows. We leave it as an exercise to verify that both definitions agree for finite
groups.

Definition. A group is solvable if it has a normal series whose factors are abelian.

Example. (1) G abelian = G solvable.

(2) G solvable and finite = all factors in a composition series of G are cyclic of prime
order p.

(3)
e < {e,(123),(132 < S
{ } 3 { ( ) ( >} » 3
has abelian factors; thus S3 is solvable.

(4) S4 is solvable, with composition series

{e} e {e,(12)(34)} o {e,(12)(34),(13)(24), (14)(23)} i A4 i Sa.

(5) A, is not solvable for n > 5. Thus S, is not solvable for n > 5.

Remark. A deep theorem of Feit and Thompson states that every finite group G of odd
order is solvable.

Lemma 4.2.5. If #G = p" for some prime p, then G is solvable.

Proof. Claim: The center of G is non-trivial.

Consider the action of G on G by conjugation: g.h = ghg~'. Then

e acZ(G) = G.a={a};

e Ge=/{e};

e G.h=G/Stabg(h) = #G.h|p";

e G =[] (orbits).

Thus
#G, =4#Z(G)+ Y = #G.h
~~ ~~
divisible by p G.h#{h} givisible by p

and p divides #Z(G). Thus Z(G) # {e}. ¢
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Define G| = G and G| = G;/Z(G;) for i > 1. Then we get

™ ™3

G =G "y G, ={e}.

» Gy

Define Hy = {e}, Hy = Z(G;) and H; = (m;0---m)~'(Z(G;)), and we get a normal
series

{e}ZH() < H < - <« H,=G
Z(Gr) Z(Gy) Z(Gy)
with abelian factors. Thus G is solvable. ]

4.3 Cyclotomic extensions

Definition. An element ¢ € K is a root of unity (root of 1) if (" = 1 for some n > 1. It
is a primitive n-th root of unity if ord( = n. In this case, we often write (, = (. We
define

M”(K):{CGKK%:l}v anﬂn(f):{gef|cn:1}

and
foo = {CE€K|("=1forsomen>1}.

Note that since 7" — 1 is defined over the prime field of K, 1, depends only on the
characteristic of K.

Lemma 4.3.1.

(1) IfcharK tn, then f = T" — 1 is separable and #1,, = n.

(2) IfcharK = p > 0, then 1 is the only root oprn — 1 foreveryn > 1.
Proof. (1): f'=nT""! 30 in K and thus 0 is the only root of f’, but £(0) # 0. Thus f
is separable and has n different roots in K, ie. #1, = n.

(2): Clear since T%" — 1 = (T —1)7". O
Remark. As a finite subgroup of K, y,(K) is cyclic, and K (Cu,Gn) = K(Cem(nm))-

Definition. A field extension L/K is a cyclotomic extension if it is algebraic and if
there is an embedding L — K (). L/K is abelian if it is Galois with abelian Galois

group.

Example. Let (7 be a primitive root of 1 over Q. Then L = Q(¢7+ ¢ 1) /Qis cyclotomic.

Note that it is not generated by roots of unity.

Theorem 4.3.2. Every finite cyclotomic field extension is abelian.
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Proof. Fix an embedding L — K (). Since L/K is finite, L C K((,) for some primitive
n-th root ¢, of 1. The case L = K is clear. Otherwise, n > 2 and char K { n, i.e. K(¢,)/K
is separable. Thus L/K is separable.

Given a K-linear field homomorphism o : K((,) — K, we have 0((,)" = (") = 1
and o ((,)* # 1 for k < n. Thus o((,) is a primitive n-th root of 1, i.e. ¢({,;) = ¢! for
some i € (Z/nZ)*. Thus imo = K((,) and K((,)/K is normal.

Since o : K(¢,) — K is determined by i = i(c') € (Z/nZ)*, we get an embedding
o:Gal(K(¢,)/K) — (Z/nZ)*. This is a group homomorphism since

G = or(G) = o(7(G) = (GO = D),

ie. i(or) =i(0o)i(T).
Thus Gal(K(¢,)/K) < (Z/nZ)* is abelian, and every subgroup is normal with
abelian quotients. This shows that L/K is normal and

Gal(L/K) = Gal(K(¢:)/K) / Gal(K(Ca)/L)
is abelian. [
Question. What is the image of the embedding i : Gal(K((,)/K) — (Z/nZ)*?

Consider I /F ,» for p prime and m = kn. Then [F» is generated by a primitive
r-th root of of unity ¢, over IF,» where r = p”" — 1, and the image of i : Gal(F » /F») =
(Frob,») is a cyclic subgroup of (Z/(p™ —1)Z)* of order k.

Theorem 4.3.3. Assume that p is prime, char K # p and ¢, € K a primitive p-th root
of unity. Assume that f = TP~' +TP~2 4 ...+ T +1 is irreducible in K[T]. Then
[K((p) : K] = p—1, and f is the minimal polynomial of ,, over K and Gal(K((,)/K) =
(Z/pZ)* =Z/(p—1)L.

Proof. Since f-(T —1) =T —1, C‘L isarootof ffori=1,...,p—1. Since f is
irreducible, C;, ¢ K foralli=1,...,p—1. Thus K((,) is the splitting field of f and of
degree p — 1 over K. By Lemma 4.3.1, f is separable and K((,)/K Galois. Therefore
i:Gal(K((y)/K)— (Z/pZ)* is an isomorphism, and f is the minimal polynomial of
Cp- O

Corollary 4.3.4. Gal(Q(¢,)/Q) ~ (Z/pZ)*.

Proof. By Theorem 4.3.3, we need to show that f = T?~! 4 ... 41 is irreducible in
QI[T]. This is the case if f(T + 1) is irreducible. We have

fT+1)=[(T+1)P-1]/[(T+1)-1]
=[(E ())T) —1] /T
=[P+ (L) +..+ (D] /T
=17 ()T (),

Since () is divisible by p foralli=1,...,p—1and (}) = p, f(T +1) is irreducible
by the Eisenstein criterion. ]
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Definition. Euler’s o-function or totient function is p(n) = #(Z/nZ)*.

Theorem 4.3.5. (, € Q primitive n-th root of 1. Then the map i : Gal(Q((,)/Q) —
(Z/nZ)* is a group isomorphism. Consequently [Q((,) : Q] = ¢(n).

Proof. Let f be the minimal polynomial of (;,. Then f|T" —1,i.e. T" — 1 = f- g for some
g € QIT]. Since the leading coefficient of f and 7" — 1 are 1, the leading coefficient of
g is also 1, and thus f, g € Z[T| by the Gauf} lemma.

Claim: If p is prime and p { n, then f({}) = 0.

Assume that ¢} is not aroot of f. Then itis aroot of g. Thus ¢, is aroot of g(T) = g(T"),
and f|g, i.e. ¢ = f - h for some h € Q[T]. Since the leading coefficient of g is 1, also
h e Z[T).

We have g(T)? = f-h (mod p), thus the residue classes f and g in F,[T| have a
common factor in F,[7] and 7" — 1 = f- g has multiple roots in F,, i.e. 7" — 1 is not
separable over IF,. Since p { n, this contradicts Lemma 3.2.1. 4

Since p 1 n, (¥ is a primitive n-th root of 1. For all primitive n-th roots  of 1, we
have ¢ = ¢/ = ¢&""P" for some i > 1 with prime decomposition i = p; - - - p,. Since C is
primitive, ged(i,n) = 1 and thus py,...,p,tn.

Applying the claim successively to py, ..., p, shows that f(¢) = 0. Thus all primitive
n-th roots of 1 are roots of f and Gal(K((,)/K) — (Z/nZ)*. O

A deep result from algebraic number theory, which we will not prove here, is the
following.

Theorem (Kronecker-Weber theorem). Every abelian extension of Q is cyclotomic.

4.4 Norm and trace

Definition. Let L/K be finite Galois with Galois group G = Gal(L/K). The norm of
L/K is the map
NL/K L — K,

a — ] o(a)
oeG

and the trace of L/K is the map
TrL/K L — K.

a — Y o(a)
oeG

Remark. Since for all 7 € G,
7([lo(a)) = [Iroo(a) = [lo(a) and 7(Lo(a)) = E7oo(a) = Lo(a),
Ny /k(a) and Try x(a) are indeed elements of K = L. We have

Np/k(ab) = Npjx(a)Npg(b)  and  Trpx(a+b) = Trpx(a)+Trp (D).
If a € K, then Ny /g (a) = a" and Try x(a) = na.
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Lemma 4.4.1. Let K C E C L be field extensions such that all of L/K, L/E and E /K
are Galois. Then NL/K = NE/KONL/E and TI‘L/K = Tl‘E/KOTI‘L/E.

Proof.
Nyk(@) = ] o@= T1 ( II o@)= T1 ( II o@).

ceGal(L/K) Te€Gal(E/K) oeGal(L/K) T€Gal(E/K) oe€Gal(L/E)
olg=1

which is Ng /g oN /g (a), and
Trpa) = Y o= Y (¥ o)=Y 7 ¥ o),

ceGal(L/K) TeGal(E/K) oeGal(L/K) TeGal(E/K) oeGal(L/E)
olg=1

which is Trg /g o Try /g (a). O
Lemma 4.4.2. Let L= K(a) /K be Galois and f = T" +c,_1T" "' +---+co the minimal
polynomial of a over K. Then Ny jx(a) = (—1)"co and Tr jx(a) = —c,—1.

Proof. Let G = Gal(L/K). Over L,

f=J]T-0@)=1"-(Y o@)T" '+ +(-1)"[] ola). ]

oceG oceG occG
|
=Try /k(a) =Np/k(a)
Definition. Let H be a group and K a field. A character of G in K is a multiplicative
function o : G — K with image in K*. A set of functions fi,..., f, : G — K is linearly
independent if a relation a; f1 +---+a,f, = 0 with @; € K implies a; = --- = a, = 0.

Theorem 4.4.3. Let G be a group, K a field and x1,...,xn : G — K pairwise distinct
characters. Then x1,..., X, are linearly independent.

Proof. Assume there is a nontrivial relation

aix1+...+ayxn = 0

and assume that » is minimal such that such a nontrivial relation exists. If n = 1, then
a;x1 = 0 and thus a; = 0, which is a contradiction.
If n > 2, then there is a g € G such that x1(g) # x2(g) since x1 # x2. Since

arx1(g)x1(h) +- - +anxa(g)xn(h) = arxi(gh)+-- +anxa(gh) = 0
for all h € G, we have

aixi(g)x1+ - +anxa(g)xn = 0.

Thus
0 = arxi+-+ann—x1(8) " - [arxi(@)xi + - +anxn(g)xn]
= [ —axa(g)xi(e) ™! Jxa +dsxs- .. +d)xn
£0
is a nontrivial relation for some a5, ...,a), that involves only n — 1 terms, which is a

contradiction. ]
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Corollary 4.4.4. Let L/K be finite Galois. Then Tty /k + L — K is not constant 0.

Proof. If Gal(L/K) = {oy,...,0,}, then Theorem 4.4.3 implies that oy +---+ 0, # 0
asamap L — L, i.e. there is an a € L such that

0 # o1(a)+--+on(a) = Tryk(a). O
Definition. A field extension L/K is cyclic if it is finite Galois with cyclic Galois group.

Theorem 4.4.5 (Hilbert’s theorem 90). Let L/K be cyclic and o a generator of Gal(L/K).
Then Ny g (a) = 1 if and only if there is a b € L such that a = b/o (b).

Proof. <= :Ifa=b/c(b), then
7(b)

NL K(Cl) = = 1
/ TEG!IT(L/K) 7o (b)

= :If Ny /k(a) = 1 and n = [L : K], then by Theorem 4.4.3,
¢ = idp4+ac+(a-o(a))o?+--+ (a-a(a)---a”_z(a))an_l
is a non-constant map ¢ : L — L, i.e. there is a ¢ € L such that b = ¢(c) # 0. Thus
a-o(b) = aa(c)+a202(c)+---+(a-a(a)-~-a”_1(a))0"(c) = ¢(c) = b
N 7N~

-~

=Nz /k(a)=1 =c

anda=">b/o(b). O

The additive version of Hilbert’s theorem 90 is the following.
Theorem 4.4.6. Let L/K be cyclic and o a generator of Gal(L/K). Then Try jx(a) =0
if and only if there is a b € L such that a = b — o (b).

Proof. < :Ifa=b—o0(a), then
Tryx(a) = Z (7(b) =70 (b)) = 0.

reGal(L/K)
= : Assume Try /g (a) = 0. By Corollary 4.4.4, there is a ¢ € L such that Tr /¢ (c) # 0.
Letn=[L:K]and
b = TrL/K(c)_1 [ac(c)+ (a+a(a))o?(c) + -+ (a+--+ 0" *(a))o" ' (c)].
Then
b—o(b) = Tryx(c) " [aa(c) + (a+o(a))o? +(a+ 40" 2(a))o"(c)

_ U(a)02(6)+---+( ( )+ 40" l(al)an(C)}
~ ——
=Try/k(a)—a=—a =¢

= TrL/K(c)_1 -lao(c) + - 4ac" ! (c) +ac|
= a O
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4.5 Kummer and Artin-Schreier extensions

Definition. A field extension L/K is called a Kummer extension (of degree n) if
#11,(K) = n and if L/K is Galois with Gal(L/K) cyclic of degree n.

Note that if #u,(K) = n, then char K 1 n.
Theorem 4.5.1. Let K be a field with #11,(K) = n.
(1) If L/K is a Kummer extension of degree n, then there is an a € L with minimal

polynomial T" — b over K such that L = K (a).

(2) Ifa € K is a root of T" — b for b € K, then K(a)/K is a Kummer extension of
degree d where d is a divisor of n such that ¢ = a® € K and T? — ¢ is the minimal
polynomial of a over K.

Proof. (1): Let ¢, € K be a primitive n-th root of unity. Then NL/K(CH_I) = (G Hr =1
since ¢, € K. By Theorem 4.4.5 (“Hilbert 90), there is an a € L such that {,; ! = a/o(a),
i.e. o(a) = (ya. Thus

o'(a) = Go'Ha) = -+ = Ga
Since a, (ua, . ..,(" 'a are pairwise distinct, [K(a) : K] > n and thus L = K(a). Since
o(d") = o(a)" = (Ga)" = d",

b=a"e€ L% =K and a is a root of T" — b, which is the minimal polynomial of a over
K since deg(T" —b) = [K(a) : K].

(2): If a is aroot of f =T" — b, then Ciais aroot of f foralli=0,...,n— 1. Thus

f =TIy (T — (\a) decomposes in K(a)[T], i.e. K(a) is the splitting field of f and
normal over K. Since f is separable, K (a)/K is Galois. Let G = Gal(K(a)/K). Then

t: G — . 1in (K) .
o — (,suchthato(a)=_la

is an injective group homomorphism. Thus G = (o) is cyclic of order d dividing n.
Therefore (o) = (}, is a primitive d-th root of unity and

o(a’) = o(a)! = (Ga)! = d,

which shows that ¢ = a“ is in K(a)'?) = K(a)® = K. Thus a is a root of g = T¢ —a.
Since degg = #G = [K(a) : K], g is the minimal polynomial of a. O

Definition. A field extension L/K is an Artin-Schreier extension (of degree p) if
char K = p and if L/K is cyclic of degree p.

Note that if char K = p, then #.,(K) = 1.

Theorem 4.5.2. Let char K = p.
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(1) Let L/K be an Artin-Schreier extension of degree p. Then there is an a € L with
minimal polynomial TP — T — b over K such that L = K (a).

(2) Let f =TP —T —b € K[T]. Then f either is irreducible or decomposes into
linear factors in K[T). If f is irreducible and a € K is a root, then K (a) /K is an
Artin-Schreier extension.

Proof. (1): Let G = Gal(L/K) = (o). Since

Tryx(—1) = (=D +-+(=1) = 0,

J

-

p times

Theorem 4.4.6 (“additive Hilbert 90”) shows that there is an a € L such that —1 =
a—o(a),ie o(a)=a+1. Thus

ol(a) = o Ha)+1 = -+ =a+i,

and a,a+1,...,a+ (p— 1) are pairwise distinct. Thus [K(a) : K| > p, which shows
that L = K(a). Since

o(@—a) = o(a)? —o(a) = (a+1)P—(a+1) = a’+1P—a—1 = da’ —a,

b =aP —ais an element of L?) = L% = K. Thus a is a root of TP — T — b.
(2): Letabe aroot of f =T? —T —b. Then
fla+i) = (a+i)P —(a+i)—b = a’+i"P—a—i—b =a’ —a—Db =0
where i =i since F; ~Z/(p —1)Z. Thus a,a+1,...,a+ (p — 1) are pairwise distinct
roots of f and f splits over L = K(a). If a € K, then f splits over K = K(a).
Claim: If a ¢ K, then f is irreducible over K.
Let f =ghin K[T|]. Then g = é[]ic/(T — (a+i)) in L[T] for some subset / of {0,...,p—
1} and g = Y% yc;T! in K[T] where d = #I. Then
Cq_1 = —Z(a—i—i) = —da—Zi,
icl icl

which is in K if and only if d = 0 or d = p. Thus either g or 4 is a unit, which shows
that f is irreducible. ¢

Assume that f is irreducible over K. Since L = K(a) is the splitting field of f and f
is separable, L/K is Galois. The K-linear automorphism

o: K(a) — K[T|/(f) — K(a+1)=~K(a),
a [T] — a+1

is of order p = [L : K] and therefore generates Gal(K(a)/K). O
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4.6 Radical extensions

Definition. Let £ and F be two subfields of L. The compositum EF of £ and F in L
is the smallest subfield of L that contains both E and F.

For the next three lemmas, we fix the following situation:

EF
PN
E F

where all fields are assumed to be subfields of a fixed larger field L. Note that if
E =K(a;) and F = K(b;), then EF = K(a;,b;).

Lemma 4.6.1. If E/K is normal, then EF /F is normal. If E/K is separable, then
EF /F is separable.

Proof. Let E /K be normal and consider an F-linear field homomorphism o : EF — EF.
Then o(E) = E since E/F is normal and o(F) = F. Thus o(EF) = o(E)o(F) =EF,
i.e. EF /F is normal.

Let E /K be separable. Then every a € E is separable over E and thus separable over
F. Since EF = F(ala € E), EF is separable over F. O

Lemma 4.6.2. If E/K is Galois, then EF /F is Galois and

¢: Gal(EF/F) — Gal(E/K)
o — ol

is an injective group homomorphism.

Proof. By Lemma 4.6.1, EF /F is Galois. Since E/K is normal, ¢(E) = E and the
restriction o|g : E — E is well-defined as an element of Gal(E /K). Clearly, ¢ is a group
homomorphism. Consider o € kerp, i.e. o|g =idg. Since also o|p = idr, we have
o =1idgr. Thus ¢ is injective. O]

Lemma 4.6.3. If both E /K and F /K are Galois, then EF /K is Galois.

Proof. Since both E/K and F /K are normal, every K-linear field homomorphism
o : EF — EF satisfies 0(EF) = 0(E)o(F) = EF. Thus EF /K is normal.

Since both E/K and F /K are separable, EF /F is separable by Lemma 4.6.1 and
thus EF /K is separable by Corollary 3.2.8. Thus EF /K is Galois. O

Definition. Let L/K be a finite field extension.

(1) L/K is solvable if it is Galois with solvable Galois group.
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(2) L/K is a simple radical extension if it is separable and L = K(a) for some a € L
that is a root of a polynomial f € K[T] of the form

f=T"-b with char K 1 n,
f=T"—-T—-b with char K = n.
(3) L/K is a radical extension if there exists a sequence
K=EyCE C . ---CE=L
of simple radical extensions. We call Ey C --- C E; a radical tower for L/K.

(4) L/K is contained in a radical extension if there is a radical extension E /K such
that LC E.

Example. (1) Every cyclotomic, Kummer and Artin-Schreier extension is solvable
(since abelian) and simple radical (by definition).

(2) The extension Q(+/2)/Q is simple radical since v/2 is a root of 7> — 2. It is not
solvable since it is not normal.

Lemma 4.6.4. Let K C E C L be finite Galois extensions such that also L/K is Galois.
Then L/K is solvable if and only if both L/E and E /K are solvable.

Proof. By Theorem 3.3.1 (Galois correspondence), we have a short exact sequence
1 — Gal(L/E) — Gal(L/K) — Gal(E/K) — 1.
The Lemma follows from Exercise 4.2. 0

Lemma 4.6.5. Let K(a)/K be a simple radical extension, o : K(a) — F such that
o(K) C F for some field F. Then F (o (a))/F is simple radical.

Proof. Since K(a)/K is simple radical, we can assume that a is a root of a polynomial

of the form f =T"—bor T" —T — b with b € K. Then o(a) is aroot of o(f) € F[T|.

Thus F(o(a))/F is simple radical, as claimed. O

Lemma 4.6.6. Let K C E C L be finite field extensions. Then L/E is contained in a
radical extension if and only if both L/E and E /K are contained in radical extensions.

Proof. = : Assume that L/K is contained in a radical extension F /K, i.e. there is a
radical tower K = Fy C ---F; = F with L C F. Then clearly E /K is contained in F' /K as
well. Define F/ = EF; as the composition of E and F; in F. By Lemma 4.6.5, F}, | /F is
simple radical. Thus the sequence E = Fjy C --- C F/ = F is a radical tower that contains
L/E.

< : Assume that £ /K is contained in a radical extension with tower K = Fy C -+ C F;
and L/E is contained in a radical extension with tower E = Ey C --- C Ej. Define
E! = E;F; (inside some fixed algebraic closure of both E; and F;). By Lemma 4.6.5,
E[ | /E]is simple radical. Thus

K=F C - CF =EyC..CE

is a radical tower and L C Ej, i.e. L/K is contained in the radical extension £} /K. [



46

Applications of Galois theory

Theorem 4.6.7. Let L/K be separable. Then L/K is contained in a radical extension if
and only if its normal closure L™™ /L in L is solvable.

Proof. < : Assume that L"°™ /K is solvable, i.e. G = Gal(L"*™ /K) is solvable. Define

n = H q.

q|#G prime
gq#char K

In the following, we consider all fields as subfields of K. Let (,, € K be a primitive n-th
root of unity and define F = K((,). By Theorem 4.3.2, F /K is abelian and thus F /K is
solvable. Since (, is a root of 7" — 1 and char K 1 n by the definition of n, F /K is simple
radical.

Let E = L"™ and consider

EF _
/ \
L™ =E F=K()

G\ K /solvable & radical

where G’ = Gal(EF /F) is a subgroup of G = Gal(E/K) by Lemma 4.6.2. By Lemma
4.6.3, EF /K is Galois.
By Exercise 4.2, the subgroup G’ is solvable, i.e. there exists a normal series

{e}=Gy < - <G, =G
with factors G; 1 /G; ~ 7/ p;Z for prime numbers p;. Define E; = (EF)%. Then
F=E, C --- C Ey=EF

is a tower of cyclic extensions with Galois groups Gal(E;/E;11) = Gi+1/G; ~ Z/ piZ.

If p; # char K, then p;|n and #1),(F) = p;. Thus E;/E;;; is a Kummer extension
and by Theorem 4.5.1, there is an a; € E; with minimal polynomial 77 — b over E; |
such that E; = E;;1(a;). Thus E;/E; is simple radical.

If p; = char K, then E;/E; | is an Artin Schreier extension and by Theorem 4.5.2,
there is an a; € E; with minimal polynomial 77 — T — b over E; | such that E; = E; | (a;).
Thus E;/E; is simple radical.

This shows that E, C --- C Ej is a radical tower for EF /F. Since also F /K is radical,
Lemma 4.6.6 implies that EF /K is radical. Thus L/K is contained in a radical extension.

= : Assume that L/K is contained in a radical extension with tower K = Fy C --- C Fj
where F;, | = F;(a;;1) is simple radical over F;. We consider Fy as a subfield of K. Let
o1 =1dg,...,0r : Fy — K be all K-linear embeddings. By Lemma 4.6.5, the successive
adjunction of the elements o1 (ay),...,0,(ay) yields a radical tower

K=F C - CF, C Fy1=Flo(a)) C... C E:K(Uj(al'>)alli7j.
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By definition F;/K is the normal closure of F;/K. Since ay,...,as are separable over
K, as well as their Galois conjugates, F; /K is Galois. Since L C F, we conclude that
porm — F,.

Define n as the largest divisor of [F; : K] that is not divisible by char K and consider

Eo=F(C) C ... C E=F(¢)

By Lemma 4.6.5, E; 11 /E; is simple radical for all i =0,...,r — 1,i.e. E;y| = Ei(agﬂ)
for some a! +1 € Eiy1 that is a root of a polynomial of the form f; = T" —b; or f =
T" —T — b; over E;. In the first case, [E;; : E;] is not divisible by char K and divides
[F; : K]. Thus [E;4 : E;| divides n and (, € E;, thus Theorem 4.5.1 yields that E;, | /E;
is a Kummer extension. In the second case, Theorem 4.5.2 yields that E; ;| /E; is an
Artin-Schreier extension. In both cases, E; ;| /E; is Galois with cyclic Galois group.
This yields a normal series

{e} = Gal(E, /E,) <1 Gal(E,/E,_,) < --- <1 Gal(E,/Eo)

with cyclic factors, which shows that E; /Ej is solvable.
By Theorem 4.3.2, the cyclotomic extension Ey = K((,)/K is abelian and thus
solvable. By Lemma 4.6.4, E, /K is solvable and thus L/K is solvable. [l

Theorem 4.6.8 (Galois’ solvability theorem). Let K be a field of characteristic 0 and
f=Y.cT" a polynomial in K[T| with splitting field L and roots ay,...,a, € L. If L/K is
not solvable, then there is no formula for the a; in the c; in terms of +, —, -, / and Ve

Proof. If there was such a formula, then the adjoining of n-th roots v/b would yield a
radical tower

K=EyC --- C E,

such that L C E, and by Theorem 4.6.7, L/K would be solvable, which is not the

case. ]
Definition. Let L/K be a field extension and ay,...,a, € L. Then L is a rational
function field in ay, . ..,a, over K if the K-linear ring homomorphism

K[Ti,....,T;)] — L
I; > aj

is injective and the induced map Frac (K 1i,..., Tn]) — L is an isomorphism.

Theorem 4.6.9 (Abel). Let K = Ky(co, - .. ,cn—1) be a rational function field in cy, . . . ,cp—1
over Ky and f = T" +c, 1T" ' +--- 4o € K[T). Let L be the splitting of f over K
and ay,...,a, € L its roots. Assume that Kylay,...,ay| is a rational function field in
ai,...,an over Ko. Then Gal(L/K) ~ S,. In particular, if char K =0 and n > 5, then L
is not contained in a radical extension of K.
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Remark. As we will see in the following proof, K C L = Ky|ay,...,a]. As a conse-
quence of Theorems 5.2.2 and 5.2.4, the transcendence degree of L over Ky must be
at greater or equal to the transcendence degree of K, which is n. Thus the elements
ai,...,a, form a transcendence basis for Ky[ay,...,a,] over Ky, and it follows that
L=Kylay,...,ay,] is a rational function field in ay,...,a, over Ky. This means that this
assumption can be removed in Theorem 4.6.9.

Proof. We have
f _ Tn—}-Cn,]Tn_l‘f‘"'—f—CO = H(T—al)

ci = (=Disi(ar,...,an) = (=1) Z .ael---aei

where s; is the i-th elementary symmetric polynomial in n arguments. This shows
that co,...,c,—1 € L and thus L = Kylay,...,ay|. Since L ~ Frac (KO[Tl,. .. 7Tn]), every

permutation of {ay,...,a,} induces a unique K-linear field automorphism of L. This
realizes S, as a subgroup of Autg,(L). Since ¢y, ...,c,— are fixed under this action, we
have K C L5».

Claim: [L: K] <n!.
Consider the sequence

K C K(a1) C --- C K(ay,...,an) =L.
Then a; is aroot of f; = f and for i > 2, q; is a root of

f _ fia

Ji = (T—ap) - (T—ai_1) T—ai

which is a polynomial in K(ay,...,a;—1) since (T —a;—1)|fi—1 in K(ay,...,ai—1)[T].
Since deg fi=n—(i—1),

n

IL:K] =[] [K(ai,....a) : K(a1,...,a;i-1)] < ﬁdegﬁ =nl. ¢
i=1

i=1

By Theorem 3.3.3 (Artin’s theorem), we know that L/LS" is Galois with Galois
group S,. Thus
n! = #S, = [L: L] < [L:K] < n!,

which implies that K = L5 and that L/K is Galois with Gal(L/K) = S,, as claimed.
Note that the last claim follows immediately from Gal(L/K) = S,,, Theorem 4.6.7
and the fact that S, is not solvable for n > 5 (Theorem 4.2.1). [l

Example. Consider f = T° — 4T +2 € Q[T]. Let L be the splitting field of f over Q.
We claim that G = Gal(L/Q) ~ Ss.
Letay,...,as € L be the roots of f. Then G acts on {ay,...,as},i.e. G < Ss.
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By the Eisenstein criterion, F is irreducible in Z[T'|. Since cont(f) = 1, the Gaul3
lemma implies that f is irreducible in Q[T']. Thus

c_Q[T]/(f) ~ Qa) C L,

deg5

which shows that 5 divides #G = [L : Q], but 52 does not. By Sylow’s theorem, G has a
5-Sylow subgroup, which shows that G must contain an element o of order 5. As an
element of S5, o is a 5-cycle.

Consider the graph of f as a function f: R — R.

=
=

— N W B W

Note that ' = 5T* — 4 has the two real zeros ++/4 /5, the two local extrema in the
illustration are all local extrema of f.

By the intermediate value theorem, the function f : R — R has 3 zeros, and thus 2
complex roots. If we embed L into C, then complex conjugation C — C restricts to an
automorphism 7 : L — L that switches the two complex roots of f. Thus 7 is an element
of order 2 in G. As an element of Ss, 7 is a transposition.

Since S5 is generated by a 5-cycle and a transposition, we have G = Ss, as claimed.



50

Applications of Galois theory

4.7 Constructions with ruler and compass

In the following, we redefine the concept of constructible points in the Euclidean plane,
using the identification of the Euclidean plane with C = R @ iR. We leave it as an
exercise to verify that this coincides with the notion of constructibility from the first
chapter.

Definition. Let K be a subfield of C. An element a € C is constructible over K if there
exists a tower
K=FEyCE C - CE;

such that a € Ej and such that E; ;| = E;(a;+1) where a;; is the intersection point

e of two lines with end points in Ej,
e of two circles with center in E; and radius in E; MR, or

e of aline and a circle with the previous properties.

Note that lines are defined by linear equations and circles by quadratic equations.
Thus [E;y; : E;] is 1 or 2.

Theorem 4.7.1. Let K C C and a € C be algebraic over K. Let L = K(a)"™ be the
normal closure of K(a) /K. Then a is constructible if and only if [L : K| is a power of 2.

Proof. If a is constructible, then there is a tower K = Ey C --- C Ej of quadratic
extensions E;;| = Ej(a;41)/E; such that a € E;. The normal closure Ef°™ of Ej in E;
is generated by the elements o(a;) where i = 1,...,k and where o ranges through all
K-linear embeddings o : E;, — Ej. Adjoining successively the elements o (a;) yields a
tower

K=Ey C --- CE; C Ei(o(ay)) C --- C E;clorm

of degree 2 and possibly degree 1 extensions. Thus [E}°™ : K] is a power of 2. Since L
is a subfield of E}°'™, [L : K] is a divisor of [E°™ : K] and therefore also a power of 2.

Conversely, if [L : K] is a power of 2, then G = Gal(L/K) is a 2-group and solvable
by Lemma 4.2.5. Thus G has a composition series

{e}=Gp < --- <G =G
with factors Z/27. If we define E; = LY, then
K=E C --- C Ep=L

is a tower of quadratic field extensions. Thus E;/E; | is Galois with Galois group Z/27.
Since ( = —1 € E; 1, the extension E;/E;; is a Kummer extension. By Theorem 4.5.1,
Ei=FE; (a,-) with b; = a% ekEi.

The element a; can be constructed from b; (and 0 and 1) as follows. Let r = |a;|,
¢ = arga;, s = |b;| and ¢ = argh;. Then b; = a? means that r = /s and ¢ = v/2,



4.7. Constructions with ruler and compass

51

which can both be constructed from r and ). More precisely, the construction of a; is
summarized in the following picture:

ir

ai

— 1 0 1 (S_l) r Ky
This shows that a; is constructible over E;; ;. An easy induction shows that a is con-
structible over K. O
Corollary 4.7.2. The cube cannot be doubled.

Proof. Given a cube with side length a, then the cube with twice the volume has side
length a+v/2. This must be true for ¢ = 1 in particular. But v/2 generates the cubic
extension Q(+/2)/Q. Thus [Q(v/2)"™ : Q] cannot be a power of 2. O

Corollary 4.7.3. Not every angle can be trisected.

Proof. An angle ¢ corresponds to a point a on the unit circle. It is equivalent to know
this point or its projection on the real axis, which is cos(y). Therefore, the problem is
equivalent with constructing cos(¢) from cos(3¢) for an arbitrary given angle ¢ = 3.

3¢

1
cos(3p)  cos(ip)

Since cos(3¢) = 4cos?(¢) —3cos(y), we are adjoining a root a = cos(y) of f =
4T3 — 3T — b where b = cos(3). If, for instance, b = 3/4, then 4f = 16T3 — 12T — 3
is irreducible over Q (use the Eisenstein criterion and the Gaull lemma). Thus f is
irreducible over Q and Q(a)/Q is of degree 3. Thus [Q(a)"™ : Q] cannot be a power
of 2. []

Corollary 4.7.4. The circle is cannot be squared.
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Proof. Given a circle with radius r, its area is A = 7r2. Thus a square with area A must
have side length \/7r. But 7 is transcendental over QQ (by Lindemann, 1882), thus also
/7 is transcendental over Q and in particular not constructible. []

Lemma 4.7.5. Let p(n) = #(Z/nZ)* the Euler ¢-function. If n =[] p{" is the prime

e,-fl

decomposition of n with p; # p; for i # j, then o(n) =TT (p{"" " (pi—1)).

Proof. By the Chinese remainder theorem, we have

z/nZ ~ [[(z/pfz) and thus (Z/nZ)” ~ H(Z/pfiZ)X.

For each i, we have
i i . i i—1 i

#(Z/pL) = #(Z/piT) — #{kp}oo =PI =P = pi (pi—1). O
Corollary 4.7.6. The regular n-gon is constructible over Q if and only if there is a finite
subset I C N such that .

n=2"-T]2*+1)
iel

and such that 2% + 1 is prime for every i € I.

Proof. The regular n-gon is constructible over Q if and only if (, is constructible over
Q. Since Q(¢,)/Q is Galois, this is the case if and only if [Q((,) : Q] is a power of 2.
By Theorem 4.3.5, [Q((,) : Q] = ¢(n).

If n =[]p;" is the prime decomposition of n, then ¢(n) =[] (pfi_l (pi—1)) by
Lemma 4.7.5. The factor pfi_l (pi—1) is a power of 2 if and only if

(1) pi =2 and ¢; arbitrary, or
(2) pi—1=2/ande; = 1.

Thus the regular n-gon is constructible if and only if

n=2"-T](2+1)

jer

for some finite subset J C N.
Note that if j = k- [ with [ odd, then

241 = (k1) UEDkpU=Dk g 0%k k).

Thus if 2/ + 1 is prime, then / = 1. This shows that j = 2' for some i. Thus indeed
n=2"Tles (22l + 1) , as claimed. O]

Definition. The i-th Fermat number is F; = 22 + 1 for i > 0. If F; is prime, then it is
called a Fermat prime.
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Fermat number value prime?
Fo 22 41=3 yes
F 22 4 1=5 yes
jo2 22 4 1=17 yes
A 22 11 =257 yes
F 22 11 = 65537 yes
F; 10 digits no
F ~ 10° digits no
F33 ~ 10'0 digits first unknown
F3 329780 ~ 10!:000.000 digits | no (largest known)

The information of this table is taken from http://www.prothsearch.com/fermat .
html and reflects the knowledge from July 2018.

Conjecture. F; is not prime for i > 5.

4.8 Normal bases

Definition. Let L/K be a finite Galois extension with Gal(L/K) = {o1,...,0,}. A
normal basis for L over K is a basis of the form (o1 (a),...,0,(a)) where a € L.

Theorem 4.8.1. Every finite Galois extension of infinite fields has a normal basis.

Remark. This theorem holds also for finite fields, and we will see a proof of this more
general result in the second part of the course.

Proof. Let L/K be a finite Galois extension with Galois group Gal(L/K) = {oy,...,0,}
where we assume that K is infinite and o; = id;. By Theorem 3.2.10 (theorem of the
primitive element), L = K(a) for some a € L. Let f be the minimal polynomial of a
over K and a; = oj(a) for i = 1,...,n the roots of f. Define

DA .
= Toap @) My U7~

which are polynomials in L[T]. Then
@) 1 ifi=j,
(a:) —
S 0 ifi}j,

which means that g; +---+ g, — 1 € L[T| has n different roots ay, . .., a,. Since deg g; =
degf — 1 =n—1, this means that g; +---+ g, = 1.


http://www.prothsearch.com/fermat.html
http://www.prothsearch.com/fermat.html
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Since (T — ay) divides g;g; for all i # j and all k in {1,...,n}, we have gig; =0
(mod f). Thus
gi=g (g1++g) = gig1+...+gg = g (mod f).

Define the (n x n)-matrix D = (040i(g1))ik=1,...» over L[T]. Since a; = 0;(a) and
o1 =1idr, we have a = a; and 0;(g;) = g;. Thus the previous relations for the g; show

that
10
D? = < ) (mod f).

0 1
In turn, we have detD? = 1 (mod f), which shows that the polynomial detD in L[T] is
not trivial. Since K is infinite, there is a b € K such that (detD)(b) # 0, i.e. if ¢ = g(b),
then det(UkUi(C))i’k #0.
Consider relation
Aoi(e)+--+ Aon(c) =0

with A\1,..., \;, € K. Applying o1, ...,0, to this equation yields
Aoror(c)+ -+ \orop(c) = 0

Aopor(c)+ -+ Aopon(c) = 0

Since det(oo;(c))ix # 0, this can only be satisfied for A\; = --- = A, = 0. This shows
that o1(c),...,0,(c) are linearly independent over K. Thus (oi(c),...,0x(c)) is a
normal basis for L/K. O

Lemma 4.8.2. Let L/K be a finite Galois extension with Galois group G = Gal(L/K)

and a € L such that (U(Cl))gec is a normal basis for L/K.

(1) Let H be a subgroup of G. Then

A= { Z coo(a)

ceG

¢o € K such that c, = ¢4 forall o € G,TEH}.

(2) Let H be a normal subgroup of G and I C G a set of representatives for G/H.

Define b =Y cy7(a). Then (O'(b))gel is a normal basis for L over K.

Proof. (1): Consider an element ) c,0(a) be an element of L. For 7 € H, we have

(Y coola)) = Y coro(a) = Y, c,,0(a).

ceG ceG ceG
Thus T(ana(a)) =Y c,0(a)ifand only if ¢, = ¢, forall o € G and 7 € H.
@ Leto € G. Since cH = Ho,

o(b) = Z or(a) = Z To(a)

TeH TeH
is invariant under H, i.e. o(b) € L. By (1), (0(b)),, spans L? over K. Since
#G/H = [L" : K], it is a basis of L¥ /K and since (o(b))ael = (U(b))aeGal(LH/K)’ it is
a normal basis. []
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4.9 The fundamental theorem of algebra

Theorem 4.9.1. C is algebraically closed.

Proof. We use the following facts from real analysis, which both follow from the
intermediate value theorem.

Fact 1: Let a € R. Then a > 0 if and only if there is a b € R such that a = b?.

Indeed, “«< ” follows from the fact that the image of f : x — x2 is contained in R>o;

and “=” follows since every given a > 0 lies between f(0) = 0? and f(c) = ¢? for a
sufficiently large ¢ € R and thus equals f(b) = b? for some b € R by the intermediate
value theorem. ¢

f(x)
2
f(x) = x? has image R
1
x
-2 -1 0 1 2

Fact 2: Every polynomial f € R[T| of odd degree and with leading coefficient 1 has a
real root a € R.

Indeed, for small b € R, we have f(b) < 0 and for large ¢ € R we f(c) > 0. By the
intermediate value theorem, there is an a € R such that f(a) =0. ¢

Claim 1: Every z € C has a square root.

Write z = a+ bi with a,b € R. By Fact 1, there are ¢,d € R with

i 1(a—i—\/az—l—bz) and  d* = 1(—cH—\/¢12+192).
g >0 . >0

Thus we obtain (¢ +di)? = a+bi. ¢

Let L/C be a finite field extension. After enlarging L, we can assume that both L/C and
L/R are Galois.
Claim 2: L =C.

Let G = Gal(L/R), H < G a2-Sylow subgroup and E = L¥. Then E /R is of odd degree
#(G/H). By Theorem 3.2.10 (theorem of the primitive element), E = R(a) for some
a € E. Let f be the minimal polynomial of a over R. Then f has odd degree and thus a
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root in R by Fact 2. Since f is irreducible, we have f =T —a and E = R, which shows
that G = H is a 2-group.

Therefore G’ = Gal(L/C) < G is also a 2-group. Either G’ = {e} and L = C (as
claimed), or G’ has a subgroup H' of index 2 since G’ has a composition series and
every composition series of G’ has factors Z/27Z by Lemma 4.2.5. If F = LH ', then
F/C is cyclic of degree 2. Since (; = —1 € C, Theorem 4.5.1 shows that F = C(a)
for a root a of a polynomial 72 —b € C|[T]. But by Claim 1, a = Vb € C, which is a
contradiction. []

4.10 Exercises

Exercise 4.1. Let
O— N —G— 0 —0

be a short exact sequence of groups. Show that N and Q are solvable if and only if G is

solvable.

Exercise 4.2. Find all composition series and their factors for the dihedral group

2

Ds = (rs|r¥P=s*=esrs=r""1).

Exercise 4.3. Let K be a field and G a finite subgroup of the multiplicative group K*.
Show that G is cyclic, which can be done along the following lines.

(1) Let ¢(d) be the number of generators of a cyclic group of order d. Show forn > 1
that
Y o) = n
din
Remark: The function (d) is called Euler’s o-function.

(2) Let G; C G be the subset of elements of order d. Show that G, is empty if d is
not a divisor of n and that G, has exactly ¢(d) elements if it is not empty.

Hint: Use that T¢ — 1 has at most d roots in a field.
(3) Let n be the cardinality of G. Conclude that G must have an element of order n
and that G is cyclic.

Exercise 4.4 (Cyclotomic polynomials). Let jie. = {¢ € Q|¢" = 1 for some n > 1}.

Define
o = [ (T-0.

CE oo
of order d

(1) Show that [];), ®g=T7"—1forn > 1.

(2) Show that ®, has integral coefficients, i.e. &, € Z|[T|.

(3) Let ¢ € 1 be of order d. Show that ®,; is the minimal polynomial of ¢ over Q.
(4) Conclude that deg®; = ¢(d) and that ®, is irreducible in Z[T].
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(5) Show that ®; = 79! +... 4+ T +1if d is prime.
(6) Calculate &, ford =1,...,12.

The polynomial @, is called the d-th cyclotomic polynomial.

Exercise 4.5. Show that there is an n; for i = 1,2, 3 such that the following fields E; are
contained in Q((,,). What are the smallest values for n;?

(1) E; =Q(V2);
(2) E» =Q(v/3);
(3) E3=Q(V-3);

Hint: Try to realize /2 and /3 as the side length of certain rectangular triangles. Which
angles do occur?

Exercise 4.6. Let (;, be a primitive 12-th root of unity. What is Gal(Q({;2/Q))? Find
primitive elements for all subfields E of Q((i2).

Exercise 4.7. Let L be the splitting field of 73 — 2 over Q. Show that v/2, v/—3 and (3

are elements of L. Calculate Ny /g(a) and Try g (a) for a = V2,a=+/=3anda = (.

Calculate NQ(@)/Q(Q) and Tl’@(@)/@(@)-

Exercise 4.8. Let L be the splitting field of f = 7% — 3 over Q. What is the Galois group
of L/Q? Make a diagram of all subgroups of Gal(L/K) that illustrates which subgroups
are contained in others. Which of the subextensions of L/Q are elementary radical? Is
L/Q radical?

Hint: Find the four complex roots ay,...,aq of f. Which permutations of ay,...,a4
extend to field automorphisms of L?

Exercise 4.9. Let L/K be a Galois extension and let

M,: L — L
b — a-b

be the K-linear map associated with an element a € L. Show that the trace of M, equals
Try /k(a) and that the determinant of M, equals Ny /x(a).

Hint: Use Exercise 2.1.

Exercise 4.10. Let p be a prime number and n > 1 and ¢ € IF)» a generator of IF;H.

Exhibit an embedding i : Gal(F»/F,) — (Z/(p" —1)Z)* and conclude that n divides
@(p" —1). Can you find a proof for n|p(p" — 1) that does not use Galois theory?

Exercise 4.11. Let K be a field and L the splitting field of a cubic polynomial f over
K. Assume that (3 € L and that L/K is separable. Show that there is a subfield E of L
such that K C E C L is a tower of elementary radical extensions (with possibly L = E or
E = K). In which situations are E /K and L/E cyclotomic, Kummer and Artin-Schreier?
What are E and Lif K =Qand f = T3 —b € Q[T]?
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Exercise 4.12. Let L/Q be a cubic solvable extension. Show that L/Q is not radical.
Show that such an extension exists.

Hint: Show that if L/Q was radical, it must contain (3. Lead this to a contradiction.
Exercise 4.13. Which roots of the following polynomials are constructible over Q?
() fi=T"=2
(2 o=T*~T
(3) f5=T*-2T
Exercise 4.14. Let K be a subfield of C and @ a root of T2 — b € K[T]. Show that every

element of K(a) is constructible over K. Use this to explain the relationship between the
two definitions of constructible numbers from sections 1.1 and 4.6 of the lecture.

Exercise 4.15. Let K be a field and L the splitting field of a polynomial f over K of
degree 4 or less. Show that L/K is solvable if it is separable.



Chapter 5

Non-Galois extensions

5.1 Inseparable extensions

In this section, we study field extensions that are not separable. The reader might keep
the extension F,(T')/IF,(T?) as a guiding example in mind.

Proposition 5.1.1. Let K be a field of characteristic p > 0 and K an algebraic closure
of K. Consider a € K with minimal polynomial f over K. Then there is an n > 0 such
that the following holds:

(1) Every root of f has multiplicity p".
(2) a" is separable over K.
(3) [K(a) : K] = p"-[K(a) : K]s

Proof. (1):Leta=ay,...,a, € K be the distinct roots of f and ey, ..., e, their respective
multiplicities, i.e. f = ¢-[[(T —a;)% in K[T].
Since f is irreducible in K[T], f is the minimal polynomial of each a;. Thus we have
isomorphisms
oi: Kla) = K[T)/(f) = Ka)
a [T] —

for every i, which extend to automorphisms &; : K — K by Lemma 2.2.7.
Since f has coefficients in K and o;(f) = f, we have

r r

[I(T-a) = f = o;(f) = [J(T—7)(a)",

i=1 i=1
which implies that e; = e; for all j = 1,...,r. Thus all roots have the same multiplicity
e=e|=-=¢e.

By Lemma 3.2.1, f = ¥ ¢;,T? if it is not separable. Thus f = g(T?) for g =Y ¢;,T"
with deg f = p-degg, and a” is a root of g. Repeating this argument if necessary,
we find an n > 0 and a separable polynomial % in K[T] such that f = A(T?") and
deg f = p"degh. We will show that this n satisfies (1)—(3).

59
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The polynomial 4 is irreducible since a decomposition i = hy - h; yields a decom-
position f = fi - f» with f; = h;(T?"). Since f is irreducible, one of fi or f; is a unit,
which means that one of 4 and A, is a unit.

Since a”" is a root of h, we have K[T]/(h) ~ K(a”"). Since deg f = p" - degh, we
have [K(a): K] = p"-[K(a”") : K] and [K(a) : K(a"")] = p".

Since a is a root of multiplicity p" of T?" —a”", which is a polynomial over K (apn),
and since (T — a)P" = TP —aP" divides f, we have e > p". Since h is separable, it has
s = degh pairwise distinct roots. Thus f has r > s distinct roots.

Since p"-s = p"-degg = deg f = e-r, we conclude that e = p" and r = s, which
verifies (1) and (2). By Lemma 3.2.3, we have [K(a) : K|; = #{roots of f} = r and thus
[K(a):K]|=p"-r=p"-[K(a): K], which shows (3). O

Definition. Let L/K be a finite extension. The inseparable degree of L over K is
[L:K];=I[L:K]/[L: K.
The following is an immediate consequence of Proposition 5.1.1.

Corollary 5.1.2. Let L/K be a finite extension. If char K = p > 0, then [L: K|; = p" for
some n > 0. L]

Corollary 5.1.3. Let K C E C L be finite extensions. Then [L: K|; = [L: E];-[E : K];.

Proof. This follows immediately from the multiplicativity of the degree of L/K (Lemma
2.1.3) and the separable degree of L/K (Lemma 3.2.5). Il

Definition. Let L/K be an algebraic extension of fields of characteristic p > 0. An
element a € L is purely inseparable over K if there is an n > 0 such that a”" € K. The
extension L/K is purely inseparable if every a € L is purely inseparable over K.

Theorem 5.1.4. Let L/K be a finite extension and ay, ... ,a, € Lsuchthat L=K(ay,...,a,).
Then the following are equivalent.
(1) L/K is purely inseparable.
(2) ay,...,a, are purely inseparable over K.
(3) [L:K];=1.

(4) The minimal polynomial of every a € L over K is of the form T?" —a”" for some
n=0.

Proof. (1)=-(2): This follows directly from the definition.

(2)= (3): Letay,...,a, are purely inseparable over K. Then the minimal polynomial f;

of a; over K is a divisor of 7" — af " for some n; > 0. This means that a; is the only
root of f;. Thus every K-linear field homomorphism o : L — L sends a; to a;, which
means that there is only one such homomorphism. Thus [L: K|, = 1.

(3)= (4): Leta € L. Then [K(a) : K]; < [L: K|; =1 and thus « is the only root of its
minimal polynomial f over K. By Proposition 5.1.1,

degf = [K(a): K] = p"-[K(a): K]s = p".
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Thus f = (T —a)?" =T —a?".

(4)=> (1): This follows directly from the definition of a purely inseparable extension. [

Corollary 5.1.5. Let L/K be algebraic and E the separable closure of K in L. Then
E /K is separable of degree |[E : K| = [L : K| and L/E is purely inseparable of degree
[L:E]=IL:K].

Proof. The extension E /K is separable by its definition. By Proposition 5.1.1, there is
for every a € L an n > 0 such that a”" is separable over K. Thus a”" € E, i.e. a is purely
inseparable over E. Thus L/E is purely inseparable.

Since E /K is separable, [E : K|; = [E : K|. By Theorem 5.1.4, [L: E]; = 1. Thus
[L:K|s=[L:E|s-[E:K|y=[E:K|]and [L:K];=[L:K]/[L:K]s=[L:E]. O

Definition. A field K is perfect is every algebraic field extension L/K is separable.

Example. e Every field of characteristic O is perfect.

Every algebraically closed field is perfect.

Every finite field is perfect.

If K is perfect and L/K is algebraic, then L is perfect.

If char K = p > 0, then K(T') is not perfect.

5.2 Transcendental extensions

Definition. Let L/K be a field extension and S be a subset of L. Then S is algebraically
independent over K if the K-linear homomorphism

evs: K[TlaeS] — L
T, — a

is injective. Otherwise, S is called algebraically dependent over K. The subset S
is called a transcendence basis for L/K if it is a maximal algebraically independent
subset over K.

Remark. Let L/K be a field extension and S C L algebraically independent over K.

Then
K(S) = () E ~ Frac(K[T,|a € S])

KCECL
s.t. SCE

is the smallest subfield of L that contains S.

Lemma 5.2.1. Let L/K be a field extension and S C L algebraically independent over
K. Then S is a transcendence basis for L/K if and only if L is algebraic over K(S).
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Proof. = : Assume that S is a transcendence basis for L/K. Then there is for every
t € L anonzero polynomial f € K[X;|s € S][T] such that f((s)ses,?) =0 since SU{¢} is
not algebraically independent. We can write

F= Y (X)) T
=0

Since S is algebraically independent, f;((s)ses) 7 0 if fi((Xs)ses # 0. Thus f((s)ses,T)
is a nonzero element of K(S)[T], which shows that ¢ is algebraic over K(S). Thus
L/K(S) is algebraic.

< : Assume that L/K(S) is algebraic. Then there is for every 7 € L a nonzero polynomial
f € K(S)[T] such that f(z) = 0. Since K(S) ~ Frac(K[X;|s € S]), f is of the form

.
F= L)’

1

for some polynomials g;((X;)),hi((X;)) € K[Xs|s € S] with h; # 0. Multiplying f with
h=T]h; yields

F=nhf=Y[[Tn&X)] &(X)T",
i=0 j#i
which is nonzero a polynomial in K[X;|s € S][T’] that vanishes in ((s),). Thus SU {z}
is algebraically dependent over K(S) for every ¢ € L, i.e. S is a maximal algebraically
independent set. O]

Theorem 5.2.2. Let L/K be a field extension and Ty C Ty C L subsets such that Ty is
algebraically independent over K and such that L/K(Ty) is algebraic. Then there exists
a transcendence basis S of L/K with Ty C S C Tj.

Proof. Let 8 be the poset of algebraically independent sets 7 C T} with Ty C T, ordered
by inclusion. Since every chain

T, c T C -

of elements in 8 has T" = [J;( T/ as an upper bound, Zorn’s Lemma implies that §
contains a maximal element S.

Claim: L/K(S) is algebraic.

We know that L/K(T}) is algebraic and by the maximality of S, every r € T} — S is
algebraic over K(S).
Let 8' be the poset of all T C T} — S such that K(S)(T) is algebraic over K(S) Since
every chain
TyCT{C---

of elements in 8’ has 7" = ;¢ 7/ as an upper bound, Zorn’s Lemma implies that there
is a maximal 7 € 71 — S such that K(S)(T) is algebraic over K(S).
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If T is not equal to all of T} — S, then there exists an r € T} — (SUT) such that
K(SUT U{t}) is algebraic over K(SUT). By the transitivity of algebraic extensions,
K(SUT U{t}) is algebraic over K(S), which is a contradiction to the maximality of 7.

Thus T =T; — S, i.e. K(T}) is algebraic over K(S). By transitivity, L is algebraic
over K(S). ¢

By Lemma 5.2.1, S is a transcendental basis for L/K. O

Lemma 5.2.3. Let L/K be a field extension with transcendence basis S. Let t € L be

transcendental over K. Then there is an s € S such that (S —{s})U{t} is a transcendence
basis for L/K.

Proof. Since t is algebraic over K(S), there is a nonzero polynomial f € K(S)[T] such
that f(z) = 0. After clearing denominators, we can assume that f € K|[S][T]|. Moreover,
we can assume that f is irreducible in K[S][T].

Since # is transcendental, degy f((X;),T) > 1 for some s € S, i.e.

F(X),T) = F(Xs)szs, T.X5) = ) &j((Xe)sp5, T

has positive degree in Xy and g ;((X5),T) # O for some j > 1. Since f = f((s),T) cannot
be a divisor of g;((5),T) in K(S)[T] and f is the minimal polynomial of ¢ over K(S), up
to a scalar multiple, we have g;((5),t) # 0.

Thus f((5),t,X;) is not zero in K(S")[X;] where §' = (S — {s}) U{¢}, and s is a root
of f. This shows that s is algebraic over K(S'). Thus L is algebraic over K(S").

Since S — {s} C & is not a maximal algebraic independent subset of L, Theorem
5.2.2 implies that S’ is a transcendence basis for L/K. []

Theorem 5.2.4. Let L/K be a field extension. Then any two transcendence bases for
L/K have the same cardinality.

Proof. Let S and T be two transcendence bases for L/K. Let 8 be the set of all bijections

«: S8 — T’ between subsets S C S and T’ C T such that S*;, =(S-8)UT is a

transcendence basis for L/K. These partially order 8 by the rule that a; < ap for

bijections o : S} — T} if §§ C S, and T] C T3, and if «; is the restriction of a; to S7, i.e.

S S BN T|
) )

! a2 I
_—
S 2 TZ

commutes. Then every chain o) < ap < --- is bounded by v : U= S; = U0 T} where
a|g = a. By Zorn’s lemma 8 has a maximal element o : S — 7.

Claim: 7' =T.

If this is not the case, then there isat € T —T’. By Lemma 5.2.3, there is an s € SSTV,
such that Si,ﬁ{i}} = (S5 S5, —{s})U{r} is a transcendence basis of L/K. Note that since
T'U{t} is algebraically independent over K, s ¢ T' C ST,, butse S-S
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Thus we extend o : S — T’ to a bijection o’ : S’ U {s} — T'U{t} with &/ (s) = that
is an element of 8. But this contradicts the maximality of a. ¢

To conclude the proof, note that if 77 = T, then S% =(S— S )UT is a transcendence
basis for L/K that contains T, which is only possible if § = S. Thus the bijection
a : S — T verifies that S and T have the same cardinality. ]

Definition. Let L/K be a field extension. The transcendence degree of L/K is the car-
dinality of a transcendence basis of L/K. The extension L/K is purely transcendental
if L = K(S) for some transcendence basis S for L/K.

Note that L is a rational function field over K if and only if L = K(S) for a finite
transcendence basis S for L/K.

Example. (1) The rational function field

K(T) = {L|f.gcK[T],g#0}

is of transcendence degree 1 over K.

(2) The field extension
L = Frac (K[x,y]/(y2 —x —x))

is not a rational function field if char K # 2 (note that this is not an elementary
fact). But L/K(x) is an algebraic extension of degree 2. Thus the transcendence
degree of L/K is equal to that of K(x)/K, which is 1.

5.3 Exercises

Exercise 5.1. Consider the purely transcendental extension K = F3(x)/F3 of transcen-
dence degree 1, and let K be an algebraic closure of K. Leta € K be aroot of f = T3 —x
and b € K a root of g = T —2. Find the separable closure E of K in K(a,b). What are
the degrees [K(a,b) : E| and [E : K]? What are the corresponding separable degrees and
inseparable degrees?

Exercise 5.2. Let I, [x, y] be the polynomial ring in two variables x and y and F,(x,y)
its fraction field. Let {/x be a root of 77 —x and ¢/y be a root of T? —y.

(1) Show that F,({/x, ¢/y) is a field extension of F(x,y) of degree p?.

(2) Show that a” € F,(x,y) for every a € F,,({/x, y/y).

(3) Conclude that the field extension F,({/x, ¢/y) /Fp(x,y) has no primitive element

and that it has infinitely many intermediate extensions.

Exercise 5.3. Let K C E C L be a tower of field extensions. Show that if the transcen-
dence degree of L/K is finite, then it is the sum of the transcendence degrees of L/E
and E /K.
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5.4 Additional exercises for the exam preparation

Exercise 5.4. Let (;, be a primitive n-th root of unity.
(1) Determine its minimal polynomial over Q and the Galois group Gal(Q(¢,)/Q)
forn=1,...,20.
(2) Calculate Ngy¢,)/0(Cr) and Trge,) /(G-
(3) Find all n > 0 such that Q(¢,)/Q is quadratic.
(4) Determine all subfields of Q(¢,) for your 5 favorite values of .
Exercise 5.5. Let K be Q, F3 or Fs, n =3 or 4 and a = 1, 2 or 3. Consider the
polynomial f = T" —a in K[T| and its splitting field L over K.
(1) Is L/K separable? If so, calculate Gal(L/K).
(Remark: Notice the different outcomes for Gal(L/K) if K or a varies.)
(2) Determine all intermediate fields E of L/K and find primitive elements for E /K.
(3) Which of the subextensions F/E (with K C E C F C L) are separable, normal,

cyclic, cyclotomic, abelian, solvable, Kummer, Artin-Schreier or radical?

Exercise 5.6. Which of the following elements are constructible over Q?
(1) \/§7 V _3’ \/67 \/§+ \/59 %7 \‘y§~
(2) ¢pforn=1,...,20.
3) 1+G. G+ G+ Gt G+ G+E+d. G+& ' G+
G+
Let a be any of the above elements and L the normal closure of Q(a)/Q. Calculate
NL/Q ((1) and TI'L/Q(a).

Exercise 5.7. Give three examples and three non-examples for the following types of ex-
tensions: algebraic, transzendental, separable, purely inseparable, normal, Galois, cyclic,
cyclotomic, abelian, solvable, Kummer, Artin-Schreier, simple radical and radical.

Exercise 5.8. Find normal bases for the following extensions: Q((3)/Q, Q(v/2)/Q,
F4/F2 and Fg/Fz.

Exercise 5.9. Solve all exercises of Chapters V and VI of Lang’s “Algebra”.



	Contents
	Motivation
	Constructions with ruler and compass
	Equations of low degrees
	What is Galois theory?
	Exercises

	Algebraic field extensions
	Algebraic extensions
	Algebraic closure
	Exercises

	Galois theory
	Normal extensions
	Separable extensions
	The Galois correspondence
	An example
	Finite fields
	Exercises

	Applications of Galois theory
	The central result
	Solvable groups
	Cyclotomic extensions
	Norm and trace
	Kummer and Artin-Schreier extensions
	Radical extensions
	Constructions with ruler and compass
	Normal bases
	The fundamental theorem of algebra
	Exercises

	Non-Galois extensions
	Inseparable extensions
	Transcendental extensions
	Exercises
	Additional exercises for the exam preparation


