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Introduction

Motivation

At the Bombay Colloquium in January 1979, Don Zagier ([83]) observed that if the kernel
of certain operators on automorphic forms turns out to be a unitarizable representation, a
formula of Hecke implies the Riemann hypothesis. Zagier called elements of this kernel
toroidal automorphic forms.

In the language of adeles, an automorphic fofnon PGL (Q) \ PGLy(A), whereA
denote the adeles @), is toroidal if for all maximal anisotropic tofi” in GL, that are
defined oveQ and allg € PGL,(A),

[ Ftg)dr 1)
TQ\T®A)

vanishes, wher& denotes the image df in PGL,. From its definition, the spaco of
toroidal automorphic forms is an automorphic representation of,R&)Lby right transla-
tion of the argument. Iff is an Eisenstein serids(s), the integral (1) equals the product
of the completed zeta functiaft (s + 1/2) (including the gamma factor) and a function
that depends nontrivially op. (Note that in the original paper, Zagier used a different
normalisation of the weight of the Eisenstein series than we do.) Consequently, for ev-
ery zeros + 1/2 of ¢*, i.e. for every nontrivial zero of the Riemann zeta function, the
Eisenstein serieg (s) is toroidal. On the other hand;(s) spans a unitary representation
of PGLy(A) ifand only if s +1/2 € (0,1) or Res + 1/2) = 1/2. Since¢ has no zeros

on the interval0, 1), cf. [66, Formula (2.12.4)], the Riemann hypothesis followsbif;

is a unitarizable representation. Indeed, it suffices to find aP&)-invariant hermitian
product on the subspace of unramified vectors, since the Eisenstein series in question are
unramified automorphic forms.

We briefly review consecutive developments. The monumental work of Waldspurger
on the Shimura correspondence ([69], [70], [71] and [72]) includes a formula connecting
toroidal integrals of cusp forms (nowadays also called Waldspurger periods) with the value
of the L-function of the corresponding cuspidal representationh/at In [80] and [81]
Franck Wielonsky worked out Zagier’s ideas and obtained a generalisation to a limited
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8 Introduction

class of Eisenstein series on PGA). Lachaud tied up the spaces with Connes’ view
on the zeta function, cf. [34] and [35]. Clozel and Ullmo ([12]) used both Waldspurger’s
and Zagier’'s works to prove a equidistribution result for tori in,Gand Lysenko ([44])
translated certain Waldspurger periods into geometric language. Finally, [15] contains
easy proofs of the Theorems A, C and D below, when restricted to global function fields
of genus less than or equal tavhose class number is

Results

On the last page of his paper [83], Zagier asks what happépssifreplaced by a global
function field. He remarks that the space of unramified toroidal automorphic forms can
be expected to be finite dimensional since the zeta function is essentially a polynomial,
which marks a difference to the case of number fields. This forms the starting point for the
present thesis.

Let F denote a global function field of gengsand class number. Define an au-
tomorphic form on PGL F to be toroidal if the literal translation fa@ to £ holds. The
main results are:

Theorem A. The space of unramified toroidal automorphic forms is finite dimensional.

Theorem B. The dimension of the space of unramified toroidal automorphic forms is at
least(gr —1)hrp + 1.

Theorem C. There are no nontrivial unramified toroidal automorphic forms for rational
function fields.

Theorem D. Let F' be the function field of an elliptic curve over a finite field wjth
elements, and + 1/2 a zero of the zeta function af. If the characteristic is noR
or h # g + 1, the space of unramified toroidal automorphic formd4idimensional and
spanned by the Eisenstein series of weight

Theorem E. The irreducible unramified subquotients of the representation space of toroi-
dal automorphic forms are unitarizable, and do not contain a complementary series.

These are Theorems 6.1.8, 6.2.14, 6.1.10, 8.3.11 and 6.7.5, respectively. The main
ingredient of the proofs of Theorems A, C and D is the theory of graphs of Hecke operators
as it will be developed in this thesis. It can be seen as a global variant of the quotients of
Bruhat-Tits trees by arithmetic subgroups as considered by Serre in [60, 11.2]. Theorem
B is a consequence of Zagier's paper using the theory of Eisenstein series and class field
theory.

The proof of Theorem E makes use of the proof of the Ramanujan-Petersson conjecture
for GL, ([17]) and the Hasse-Weil theorem ([76]), which is the analogue of the Riemann
hypothesis for global function fields. For the function field of an elliptic curve it is possible
to prove unitarizability without making use of the Hasse-Weil theorem, but this does not
imply the Riemann hypothesis (section 8.4).
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Conjectures

The work of Waldspurger for number fields, cf. [71] and [72], and a theory of double
Dirichlet series of Fisher and Friedberg, cf. [18] and [19], lead to Conjectures 6.2.15 and
6.4.3, which can be combined to

Conjecture A. Let r be the number of isomorphism classes of irreducible unramified
cuspidal representations whogefunction vanishes at/2. Then the dimension of the
space of unramified toroidal automorphic forms equ@ls- 1)z + 1 +r.

Tentative calculations for ramified representations show that the subspace of toroidal
automorphic forms with certain fixed ramification type has a finite decomposition series.
There are technical obstructions to proving this in general. Nevertheless it suggests Con-
jecture 6.1.15, which is

Conjecture B. The space of all toroidal automorphic forms is admissible.

Leitfaden

S B0
.-"Sections.5
6]

Content overview

The present thesis intends to be comprehensible to a reader with a basic knowledge of
number theory and algebraic geometry. To realise this goal, it is necessary to give short
introductions to various topics adapted to the purposes of the thesis, namely, to certain
aspects from the theory of automorphic forms as well as parts from the theory of vector
bundles on curves. The philosophy in these introductory parts is that they contain proofs
where they are short and instructive or missing from the existing literature, and provide
a reference otherwise. As known theory is interwoven with new results, the following
overview tries to disentangle the knot.

CHAPTER 1 defines the context of this thesis and gives short introductions to adelic
groups, automorphic forms and the Hecke algebra. The last section introduces the object
of investigation, the space of toroidal automorphic forms. In particular, there is a definition
for split tori that will reproduce the results that Zagier obtained in [83] in classical language
for Q.

CHAPTER 2 sketches the theory of L-series and Eisenstein series and puts some em-
phasis on derivatives, which play an important role in the representation theory of toroidal
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automorphic forms.

CHAPTER 3 inspects unramified admissible representations and their decomposition
series. It further provides results for detecting unramified automorphic forms by their
eigenvalues under Hecke operators.

CHAPTER 4 introduces the new notion of the graph of a Hecke operator. Examples
for rational function fields are accessible by elementary matrix manipulations. Further
investigations for general function fields will be done only for generators of the unramified
part of the Hecke algebra. The structure of the graphs of these operators inherits many
properties from local coverings with Bruhat-Tits trees.

CHAPTERD5 describes the well-known geometric interpretation of automorphic forms
as functions on vector bundles and the meaning of Hecke operators in this context. This
enables methods from algebraic geometry and in particular reduction theory for vector
bundles to enter the investigation of graphs of Hecke operators. Namely, the graph is a
union of finitely many half lines, called cusps, that are connected by a finite graph, called
the nucleus. The cusps are of simple nature and it is the nucleus that encodes arithmetic
information aboutF. Finally, we will reinterpret automorphic forms as functions on the
vertices.

CHAPTER 6 uses the theory developed in the previous chapters to prove Theorems A
and C. Theorem A further implies that the space of unramified toroidal automorphic forms
decomposes into three parts, which are, roughly speaking, Eisenstein series, residues of
Eisenstein series and cusp forms. Zagier’s calculation (applied to the first part) proves
Theorem B. Applied to the second, it shows that there are no toroidal residues of Eisenstein
series. The question of toroidal cusp forms in general can be answered if Waldspurger’s
work is translated to global function fields. The last sections discuss the history of the
Riemann hypothesis and its connections to toroidal automorphic forms. In particular the
proof of the Riemann hypothesis for global function fields implies Theorem E.

CHAPTER 7 determines the structure of graphs of certain Hecke operators for func-
tion fields of an elliptic curve. This is done by completely geometric methods using the
classification of vector bundles on elliptic curves by Atiyah.

CHAPTER 8 applies the graphs of the previous chapter to prove Theorem D. It further
contains new proofs of some particular results, such as a dimension formula for the space
of unramified cusp forms, and unitarizability results for unramified toroidal automorphic
forms that can be proven without making use of the Hasse-Weil theorem.



CHAPTER 1

Definitions and Preliminaries

This chapter recalls relevant notions and facts from the theory of adeles, al-
gebraic groups and automorphic forms. It is not meant to give a complete
treatment, but rather discusses the viewpoint of this thesis and settles notation.
References will help to find missing facts in the literature. The last section
introduces toroidal automorphic forms, the main object of study.

1.1 Notation

As reference for this section, consider [49], [55] or [79].

1.1.1 Let N be the natural numberg, the integersQ the rationalsR the reals and the
complex numbers together with the usual absolute valgeand the usual topology. Fix
a fieldF, with ¢ elements and lef' be a global function field with constant fief},, i.e.
F/F, is afield extension of transcendence dedredose elements of finite multiplicative
order are contained iR,.

1.1.2 A placeis an equivalence class of nontrivial valuationgkofLet | X | denote the set
of all places. For the rest of this paragraph,fix | X|. Let F, be the completion of
atx. Choose a uniformiset, € F. ThenF, is isomorphic to the field of Laurent series
Fy. ((x)) in 7 overF, , whereq, = ¢q%% for some positive integer deg which is
called the degree of. Let O, be the ring of integers of,, which is isomorphic to the
ring of formal power serie§,, [[7,]]. Further letm, = 7,0, be its maximal ideal and
kx = Ox / myx ~ F, itsresidue field. The field’, comes with a valuation, that satisfies
vy () = 1 and an absolute valye, = g °*, which satisfiesr,| = ¢; .

1.1.3 For every finite subsef C |X|, defineAs as[ [ cs Fx X [[1¢s Ox- WhenS =0,
we also write@a for Ag. The family of all finite subsets dfX | together with inclusions
forms a direct system, and the colimit, or unigh= Ar = | JAs over this system is
called theadele ringof F. In other wordsA is the subring oﬂxele F, consisting of
all elementda,) such that for all but finitely many € | X|, vx(ax) > 0. The canonical
injections to the full product restrict t6,, — A, and the canonical projections restricted
to A — F, are still surjective.

1.1.4 Theidele groupA* is the group of invertible adeles. An idele= (ay) is char-
acterised by the vanishing ofy(a,) for all but finitely many placesc. The degree
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12 Definitions and Preliminaries KAPTER 1

dege = ), x degx - vx(ayx) and the normal = [ [, x| lax|, of an idele are thus well-
defined functions. Denote WA the ideles of degre@, or equivalently, of norni.

1.1.5 A divisorof F is an element

D=(Dy) € @Z-x~ A /O
x€|X]|

with D, € Z for all x € | X|. The latter isomorphism is obtained by sending the divisor
x (for x € | X|) to nx, where we interpret, as idele via the inclusio™ C F* C A*.
Define theidele class grougs F* \ A* and thedivisor class groufCl F asF>*\ A* / O}.
If we write [D] € CI F, then we always mean thak is a divisor that represents the divisor
class[D].
By embedding an element € F diagonally intoA along the canonical inclusions
F < Fy, we may regard” as a subring oA. The product formuld [, ¢ x lal, = 1 can
be reformulated ag™ C Aj. SinceO; consists of the ideles = (ax) with vy(ax) =0
for all placesx, alsoO; C Aj. Thus we can define the the degree of a divisor and divisor
class to be the degree of a representing idele. cthss groupCl° F = F* \Ag /Ox is
a finite group, whose ordeér is theclass number More generally, Gl F denotes the
divisor classes of degretand CF? F the divisor classes of degree greater or equal.to
These groups fit into an exact sequence

d
0 ce F clF =27 0.

which splits non-canonically, cf. paragraph 2.1.2. For surjectivity of the degree map, cf.
[57, para. 8.2]. In particular, there are always ideles of depreeen wherF has no place
of degreel.

An prime divisoris a divisor that is represented by for some place: and areffective
divisoris a divisor that is either trivial or the sum of prime divisors.

The definition of a canonical divisor is somewhat more involved and will therefore be
assumed to be known ([79, Ch.VI, Defs. V1.1, VI.4] or [28, p. 295])differental idele
(terminologysic due to Weil) is an idele that represents a canonical divisor. All differental
ideles have the same degree. Lok a fixed differental idele. Thgenusgr of F satisfies
dege =2gFr —2.

1.2 Adelic topologies

Local fields and adeles come with a natural topology, which turns them into locally com-
pact rings. Hence all algebraic groups over these rings turn into locally compact groups,
which carry a Haar measure. As general reference consider the same books as in the previ-
ous section. For the theory of locally compact groups we suggest the classic by Pontryagin
([51])) and [31].

1.2.1 The topology ofF, is given by the neighbourhood bagis’ O, };en Of 0, which
turns F into a locally compact field, sino8, is a compact neighbourhood @f Remark
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that F is totally disconnected and Hausdorff. By its definition as

A= U JIFex]] 0.

Sc|x| xeS x¢S
finite
we can endovwA with a canonical topology, in which the subsets above are embedded as
open subspaces carrying the product topology. By Tychonoff’s theafanis compact
as product of compact spaces, and thuss locally compact, totally disconnected and
Hausdorff.

1.2.2 For every varietyl’ over Fy, i.e. an separable integrl.-scheme of finite type,
the setV(Fy) has astrong topologycf. [43]. It is uniquely determined by the properties
that the set ofF-rational points of the affine line X Fy) is homeomorphic taFy, that
if V =V;xV,, thenV(F,) is homeomorphic td/; (Fyx) x V>(Fy), and that for locally
closed embeddingg’ < V, the spacéd’’(Fy) has the subspace topology Bt Fy). The
strong topology turn® (F,) into a locally compact, totally disconnected Hausdorff space.
If V is a variety overF that is embedded into affine space, then we can consider
for everyx € | X| the Ox-rational points ofl” and obtain an inclusiow (O) C V(Fy).
Equipped with the subspace topolog¥©. ) is compact. Defin& (As) as][,.cg V(Fx) ¥
[1i¢s V(Ox), andV(A) as the colimit ) V(As) over all finiteS C |X|. The topological
spacel/(A) does not depend anymore on the embedding into affine space (in contrast to
V(O,) andV(Ags)). Therefore we can associate to any variBtypver F a natural topo-
logical spacé’(A), which does not depend on the choice of an atlas. We call the topology
on V(A) thestrong topologytoo. Again,V(0a) = erm 0O, is compact by Tychonoff’s
theorem, and thuB'(A) is locally compact, totally disconnected and Hausdorff.
If V(A) is not empty but compact, thel(Fy) is compact for every € | X| since
the projection mapd/(A) — V(Fy) are surjective. The converse implication holds as
well if we consider all finite field extensions. More precisely, we can prove the following
statement along the lines of the proof of [43, Thm. 1.1].

1.2.3 Theorem. LetV be avariety ovef andx < | X|. Then the following are equivalent.
(i) V is complete.
(i) V(Ey) is compact in the strong topology for every finite field extengighF,.
(i) V(AEg) is compact in the strong topology for every finite field extengigi.

1.2.41If V is an algebraic group ovef, then the group law turn®&(A) into a locally
compact group. A locally compact group haketi and aright Haar measurei.e. a non-
trivial measure that is invariant by left or right translations, respectively. Every time that
an algebraic group appears we assume the adelic points to carry a Haar measure. A Haar
measure is unique up to a constant multiple. Rather than fixing the constant, we point out
that constructions are independent of the choice of constant.

The Haar measure defines a Lebesgue integral for measurable functions with compact
support. The Haar measure of the proddgtx H, of two locally compact groups equals,
up to a multiple, the product of the Haar measures of the faéfgrand H,. Thus we can
apply Fubini’s theorem if we have an isomorphigin~ H; x H, of topological groups,
quietly assuming that the Haar measures are suitably normalised.
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1.2.5 The groupV(A)V of continuous group homomorphismi§A) — S! into the unit
circle S! ¢ C is called thecharacter groupof VV(A). If V(A) is abelian, ther/(A)V is
also called thd?ontryagin dualof V(A). The crucial property of the Pontryagin dual is
that(V(A)Y)Y = V(A).

1.2.6 Let G, be the additive group scheme a@g, be the multiplicative group scheme.
ThenG,4(A) is the additive group ofA with the topology that we have defined before. Its
Pontryagin dual is isomorphic ©8,(A) itself in a non-canonical way. The gro@m(A)

is isomorphic to the idele group, and endows the ideles with a locally compact topology.

For example,Gnh(A) = GL;(A) can be realised as the closed subspace defined by
XY =1 of the affine space with coordinatés andY. The dual of the idele group is
somewhat involved, but in the following chapters, we investigate the quasi-characters of
F*\ A*, atopological group closely related to the dualdf.

Finally, we warn the reader that the idele topology is finer than the subspace topology
of A* C A as the inclusion GL(A) C Mat, (A) of the invertible matrices into ali-by-n-
matrices is not an embedding of topological spaces but only continuous. Only if we embed
GL, as closed subvariety into affine spacedt some dimensiok, e.g. by sending points
g of GL, to (g.g™!) in Mat, xMat, ~ A2"* | the induced map GLA) — A¥(A) is a
topological embedding, which can be used to describe the topology ROAGL

1.3 Automorphic forms

The concept of an automorphic form used nowadays can be applied to a large class of
algebraic groups. Moeglin and Waldspurger describe in [48] the theory for a certain class
of extensions of connected reductive groups. Here, however, we will restrict 0 GL
Standard reference books are the classic [32] by Jacquet and Langlands, [11] and [23]. We
consider automorphic forms on Glwith trivial central character. These are nothing else

but automorphic forms on PGl.but for technical reasons, it is more convenient to work

1.3.1 SetG = GL, and letZ be the centre ofr. We will often write G instead ofG(A),
ZF instead ofZ(F), etc. LetK = GL,(Oa), Which is the standard maximal compact
subgroup ofGa. The topology ofGa has a neighbourhood badisof the identity matrix
that is given by all subgroups

K'= ]k < [] &k =K

x€|X| x€|X|

such that for allk € |X| the subgrougX’, of K, is open and consequently of finite index
and such thak’, differs from K only for a finite number of places.

Consider the spac€?(Ga) of continuous functionsf : Ga — C. Such a function
is calledsmoothif it is locally constant. Ga acts onC°(Ga) through theright regular
representatiomn : Ga — Aut(C°(Ga)) that is defined by right translation of the argument:
(0(g) f)(h) = f(hg) for g.h € Ga and f € C°(Gp). Since we are only concerned with
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subrepresentations pf we will also writeg. f for p(g) f. Afunction f is calledK -finite
if the complex vector space that is generatedhy }xcx is finite dimensional.

A function f is calledleft or right H-invariant for a subgroupH < Ga if for all
he H andg € G, f(hg) = f(g) or f(gh) = f(g), respectively. Iff is right and left
H -invariant, it is calledbi- H -invariant

1.3.2 Lemma. A function f € C°(Ga) is smooth andk-finite if and only if there is a
K’ € V such thatf is right K’-invariant.

Proof. If f is smooth, then we find for evegye Ga a Kz € V such that for alk € K,

f(gk) = f(g). If fis K-finite, spalk. f }rcx admits a finite basi§¢fi,..., f} and K

acts on this finite-dimensional space. LE&t= (fi,..., f;): Ga — C". By the linear
independence of basis elements, we find..., g, € Ga such tha{F(g;)}i=1,.., CC"

is linearly independent. PW’ = K,, N...N Kg,, then for allk € K’ andi = 1,...,r,

we havek.F(g;) = F(gik) = F(g;). ThusK’ acts trivially on spafk. f }xcx, and in
particular, f is right K’-invariant. The reverse implication is obvious.O

1.3.3 Let f be a smooth function that &-finite and leftG g Za-invariant. We say that
f is of moderate growtif for every ¢ > 0 and all compact subsef§’ C Ga, there are
constantE andN such that for alk € K’ anda € A* with |a| > ¢,

f((* k) =Clal™ .

1.3.4 Remark. The condition of moderate growth can be restated as follows, cf. [9, para-
graph 1.6] and [11, p. 300]. Choose a closed embed6ding AX into affine space, e.g.
the embedding described in paragraph 1.2.6, and consider the maximunj pogon
A¥(A), which restricts taGa. A function f € C°(Gn) is of moderate growth if and only

if there are numberd’ andC such that for alg € Ga,

1£(®)lc < Clglma -

This notion is in fact independent of the chosen embedding A* and it is consistent
with the definition of the previous paragraph, cf. loc. cit.

1.3.5 Definition. Thespaces of automorphic forms (with trivial central characteig the
complex vector space of all smooth functiofis Go — C that areK-finite, of moderate
growth and leftG g Za-invariant. Its elements are calladtomorphic forms

1.3.6 Note that forg € Ga and f smooth, K -finite, of moderate growth, or leffi p Z -
invariant, g. f is also smoothK-finite, of moderate growth, or lefr r Z-invariant, re-
spectively. Thus the right regular representation restrici.to

For every subspack C 4, let VX' be the subspace of aff € V that are rightk’-
invariant. The functions iX”" can be identified with the functions d@&p Za\Ga/ K’
that satisfy an appropriate growth condition, cf. paragraph 584..is called the space
of unramified automorphic formséemma 1.3.2 implies

1.3.7 Proposition. V = U VK for every subspac¥ C A. O
K’ev
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1.3.8 Remark. A subrepresentation afa on C°(G,a) is called smooth if the stabiliser
of each element o€°(G,) is open inGa. Lemma 1.3.2 implies thaf € C%(Ga) is
contained in a smooth subrepresentation if and ghlg smooth andK-finite and the last
proposition states that every subrepresentation &f smooth.

1.4 The Hecke algebra

Hecke algebras are convolution algebras of functions with compact support on the adelic
points of the group under consideration. A representation of the group in a complex vector
space corresponds to a representation of the Hecke algebra by assigning an integral oper-
ator to each of its elements, which are called Hecke operators. We make this precise for
G = GL,. Fix a choice of Haar measure f6r,. (Note thatG, is unimodular, i.e. the left

and right Haar measures coincide.)

1.4.1 Definition. The complex vector spac# of all smooth compactly supported func-
tions® : Ga — C together with the convolution product

DDy g / @, (gh™ YD, (h)dh
Ga

for ©,,®, € H is called theHecke algebra folG 4. Its elements are callddecke opera-
tors.

1.4.2 The zero element off is the zero function, but there is no multiplicative unit. For
K’ €V, we define}k- to be the subalgebra of all Bi--invariant elements, i.e. alb € #

that are left and righK’-invariant. These subalgebras, however, have multiplicative units,
to wit, the normalised characteristic functieg: := (vol K')~! chaigs acts as the identity

on k- by convolution.

1.4.3 Lemma. Every® € J is bi-K'-invariant for someK’ € V.

Proof. Since® is locally constant an® is a system of neighbourhoods of the identity, we
can cover the support @b with sets of the forny; K; with g; € Ga andK; € 'V, where

i varies in some index set, such tiltis constant on each; K;. But the support ofb is
compact, so we may restrict to a finite index set. THEh= ("), K; € V, and® is right
K"-invariant. In the same manner, we findkd’ € V such thatd is left K”-invariant.
ThenK’ = K” N K" satisfies the assertion of the lemmao

1.4.4 Proposition. # = | | #x. o
K'eVv

1.4.5 Lemma.If ®; € # is left Ky-invariant and ®, € J is right K,-invariant for
K1, K, € V,then®; x ®, is left K;-invariant and rightK,-invariant.
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Proof. We calculate fog € Ga, k1 € K1, andk; € K, that

1 % Dy (kygks) = / 1 (k1 gkah™") s (h) dh
Ga

_ / 1 (gh' ) ®a(Wka) dl' = By % B(g)
Ga

by the change of variablds = hk,!. ©

1.4.6 The right regular representatignof G, on A induces theight regular representa-
tion of # on A by

(@) f g / S(h)p(h) f(g)dh
Ga

which we also denote b (/). We have thatd; x ©,(f) = &1(Po(f)). Restriction
gives a representation gfx, on Ak for eachK’ € V.
Note that the right regular representation is not trivial sinceffar AX",

x (f)(g) = / ex:(h) f(gh)dh = vol(K')™! / Flghydh = f(g).
K/

Ga
1.4.7 Lemma. For every f € C°(Ga) and everyd € #x, ®(f) is right K’-invariant.
Proof. Letg € Gp andk € K’, then

O(f)(gk) = /‘D(h)f(gkh)dh w3 /q)(k_lh')f(gh’)dh’ = ®(f)g. o

h=kh)
GA GA

1.4.8 We call a subspace @@ °(Gx) that is invariant unde6 , or J briefly aninvariant
subspacelt is also called aG5-moduleor an#-module This is nothing else but a sub-
representation ofr or #, also called an¥-submodule of4. An irreducible subspace
or simple #-submodulds a non-zero invariant subspace that has no other invariant sub-
spaces than the zero-space and itself. We ca¥gnrsubmodulef VK anJx -invariant
subspace for everk’ € V, and we call itirreducible if it is non-zero and contains no
proper#k--submodule different from the trivial subspace.

ForanyK’ €V, let

HV)={D(f)|Ped,feV} and Hx/(V)={P(f)|PeHk,f eV}
be theJf-module and the’’x--module, respectively, generated By and let
GaV=1{¢.f|gcGa. f €V}

be the Go-module generated by. Write Ga.f := Ga.{f}, H(f) := H({f}) and
Hr(f):= Hx ({f}) for f € AandK' € V.
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1.4.9 Proposition. If V' ¢ C°(Ga) is an invariant subspace, thefx: (V) = VK for
eachK' e V.

Proof. The inclusion#g: (V) C VK follows from Lemma 1.4.7, the inclusion X" c
Hx (V) from thatHk, has a unit, see paragraph 1.4.20

1.4.10 Lemma. For everyK’, every rightK’-invariant € C°(Ga) and everyg € Ga,
there is ad® € Hgs such thatd(f) =g.f.

Proof. Put® = (vol K’)"! char g, then for allg’ € 4,

O(f)(g) = / ®(h) f(g'h)dh = (VoI K’y / fgghydk = g.f(g). ©
Ga K’

1.4.11 Lemma. For everyK’' € V and every® € Jk-, there areh,...,h, € Ga and
my,...,m, € C for some integer such that for allg € G and all f/ € AKX,

O(f)(g) = Y _mi-[f(ghi).
i=1

Proof. Since® is K’-bi-invariant and compactly supported, it is a finite linear combination
of characteristic functions on double cosets of the fég¢m K’ with 1 € G5. So we may
reduce the proof t& = chark, k. Again, sinceK’h K’ is compact, it equals the union of
a finite number of pairwise distinct cosétsK’,...,h,K’, and thus

[ ehatcn sty an =Y [ cha, ko) fgh)dh = 3 vol(K') £ (shi)
i=1

GA i=1 GA
for arbitraryg € Ga. O

1.4.12 Proposition. A subspace of °(Ga) is invariant underG, if and only if it is in-
variant under#, both acting via the right regular representation.

Proof. Lemma 1.4.10 implies that a subspace invariant ues also invariant under
Ga. The converse follows from Lemma 1.4.11.0

1.4.13 Lemma. A subspacé’ C + is irreducible if and only if’ X" is irreducible as
Hx-module for all sufficiently smak’ € V.

Proof. Let V C + be irreducible. IfW c VX' is an #x/-submodule for som&’ € V,
then# (W) is an invariant subspace &f. Assume that¥ is a proper subspace X"
For® e # and f € W such thatb(f) € VK,

O(f) = ex(P(f)) = ex/(Plex’(f))) = exrxPxexr(f) .

but by Lemma 1.4.5%k *« ® xegs € Hgs, and thusd( /) € W. This shows thalV equals
HW)NVE' and asV is irreducible, both# (W) and W are trivial, soV X" is zero or
irreducible for everyk’ € V. SinceV is non-zero,V X is non-zero for all sufficiently
smallK' e V.
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If, on the other handl’ contains a proper nontrivial invariant subspatethen there
isaKk’ €V such that¥ X" is a proper nontrivial subspace B . This proves the reverse
direction. O

1.4.14 We call ¥k the unramified part of#. Its elements are called unramified Hecke
operators. Fox a place ofF, let @, be the characteristic function & (™ ;) K divided

by volK, and ®, o the characteristic function ok (™ , )K = (™ .,)K. Both are
elements of#k .

1.4.15 Lemma. Identifyingex with 1 € C yields #g ~ C[®,, Dy 0. d>;b]x€|x|. In par-
ticular, #x is commutative. For allf € AX, one hasb, o(f) = f = <I>;’10(f).

Proof. The first assertion follows immediately from Proposition 4.6.2 and Theorem 4.6.1
in [11], the last from the fact thaf is Za-invariant. O

1.4.16 Remark. We are actually considering automorphic forms on RGind the un-
ramified part of the Hecke algebra for P&is nothing else buE[®,],¢ x|. For technical
reason, however, we will work with automorphic forms on Ghat areZ-invariant, and
thus have to consider the Hecke algebra for, GLhe latter statement of the lemma can
be expressed by saying that the representation of the Hecke algebrafonGi factors
through the representation of the Hecke algebra for PGL

1.5 Toroidal automorphic forms

This section introduces the object of investigation in this thesis, the space of toroidal auto-
morphic forms. We first collect some facts about maximal torie= GL,.

1.5.1 Definition. A maximal torus ofG is an algebraic subgroup of G defined overF
such thatl (F3P) ~ G, (F3¢P) x G, (F**P) over a separable closufe®An particular, it is
abelian. A torus is calledplit overE if T(E) >~ Gn(E) x Gn(E) for an field extension
E of F, andanisotropic overE otherwise. We say thdt is a split or anisotropic torus if
it is a maximal torus that is split or anisotropic, respectively, dver

1.5.2 Let E/F be a separable quadratic algebra extension. THhéneither a separable
field extension of degre2of F or isomorphic toF & F ([6, 81] or [47, 826]). Choosing
a basis ofE as vector space ovét defines an inclusion of algebras

Of : E ~Endg(E) € Endr (E) — Mat, F

and®g (E™) is a maximal torus ofs r C Mat, F, isomorphic toE*. Note thatF C E
impliesZr C Tr. Itissplitifandonly ifE ~ F & F.

On the other hand, every tords is given by an embedding of this form, because
over the separable closuf&se ~ (F3¢P)* @ (F5P*, which is the multiplicative group
of FSeP@ FS°F a separable quadratic algebra extensiod&P. Taking invariants under
the action of GalF*¢F/ F) yields the embedding of * & F* into a separable quadratic
algebra extension af as muliplicative group.

Since changing the basis that we used to defigeconjugates the torus, we obtain:
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1.5.3 Proposition. The map

conjugation classe

- sep :
subfieldsE C F UiFeF) 5 of maximal
quadratic overF i
toriin Gr
E — O (E™)

is a bijection. The inverse map sends a maximal t&fu® the field £ whose group of
units E* is isomorphictol'r. 0O

1.5.4 Lemma. If T is an anisotropic torus, thefig Z \ Tp is a compact abelian group.

Proof. As quotient of an abelian grouffy Za \ Ta is abelian. Concerning compactness,
observe that i ~ E*, thenTy ~ A%, Zp ~ A%, andTr ~ E™ as topological groups,
and thusl'r Za \ Ta ~ E*A% \ A%. Look at the exact sequence of topological groups

1— O, — E*\Ap; —CIE —0,

The action of the Galois group Gdl/ F)) on E extends to an action okg with invariants
preciselyAr. We have thaE™ N A% = F* andOx  NAL = Oy, . Dividing out byA%
yields

1 — OX \OX, — E*A}\A%5 — CIE / j(CIF) —0,

wherej : C| F — CI E is the canonical map. Since the left and the right term are both
compact groups, so is the middle onen

1.5.5 Lemma. If T is an split torus, thedT'r Za \ Ta >~ F*\ A*.

Proof. There is an isomorphisii ~ G, x G, over F that inducesr ~ F* x F* and
Ta ~ A* x A*. This gives

TFZA\Ta =~ (ZF\ZA)\(TF\Th)
~ (FX\AX)\ (FX\A%) x (FX\A¥)) ~ FX\A*. 0

1.5.6 Lemma. If T is an anisotropic torus witf'r ~ E*, then it splits ovelE.

Proof. We definedTr as the image o> under the injective algebra homomorphism
®f : E — Maty(F) over F. |dentifying Tr with E* yields

Te~(E®rE)*~ P oE)~ P GmE). o

o€GallE/F) o€GallE/F)

1.5.7 We recall some facts about Borel subgroups from the theory of linear algebraic
groups, cf. [8, §8811.1-11.3] or [74, §10.5]. Borel subgroupB of G is an algebraic
subgroup ofG defined overF such that the quotient variet§ \ G is isomorphic toP!
over F, and thestandard Borel subgroufs the subgroup of invertible upper triangular
matrices.

Every Borel subgrou of G contains a maximal split torug, and is conjugated in
G to the standard Borel subgroup such tiatonjugates to the diagonal torus, i.e. the
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group of invertible diagonal matrices. On the other hand, every split Brisscontained
in precisely two different Borel subgroups, and if we call the #n¢hen we call the other
BT.

A Borel subgroupB contains a uniquenipotent radicalV, i.e. a subgroup of maximal
size whose elements are the sum of the identity matrix with a nilpotent matrix.idfa
split torus contained i, thenB = TN . We denote the unipotent radical Bf by N 7.

Since the following constructions are invariant under conjugation, it suffices to keep in
mind the standard Borel subgroptogether with the diagonal tord. ThenBT is the
group of invertible lower triangular matrices, which is conjugatedtby (1 1), leaving
T invariant, but interchanging the values on the diagonal. The algebraic growgrsl
NT are nothing else but the matrix groufds' 1)} and{(} ,)}, respectively.

1.5.8 Remark. For better readability we leave a blank space where matrix entries are
zero, and asterisks stand for arbitrary elements of the ring under consideration that make
the matrix invertible. S¢' ;) has to be read g, 9), and{(* 1)} stands for the algebraic
subgroupH of G that gives the subgroufig = {(&%)|a € R*.b € R} of Gg for every
algebraR over F .

1.5.9 ([11, Thm. 3.5.5], [48, 8§81.2.6—1.2.7]). Le® be a Borel subgroup with split torus
T and unipotent radicaV. Then define theonstant termfy (with respect taV) of an
automorphic formf € # as the following function orG:

F3(g) == VOI(Ng \ Na)~! [ Fng)dn

NpF\Na

SinceN is invariant under conjugation b, fy is a function that is lefi3 g Z 5 -invariant.

If fn(g) vanishes for allg € Ga, we call f a cusp form a notion that does not
depend on the chosen Borel subgroup, sinceHpr= yBy~! with unipotent radical
N, =y !Ny,

fi, (g) = / Flng)dn = / Fo " nyg)dn = / Flngy)dn = fu(gy)
Ny(F)\Ny(A) NF \Na NF \Na

with g,, = yg running throughG asg varies inGa. We denote the whole space of cusp
forms by Ay.
Every automorphic form has approximation by constant terms

1.5.10 Theorem ([48, 1.2.9]).For every f € 4, the functionf — fy has compact support
as a function omBr Za \ Ga.

Lete € G denote the identity matrix.

1.5.11 Proposition. Cusp forms have compact support mod@leZ 5, and for the unipo-
tent radical N of any Borel subgroup,

Ao ={f €A[VPeH, O(f)n(e)=0}.

Proof. The first claim follows from theorem 1.5.10. The second claim follows from Lem-
mas 1.4.10 and 1.4.11. 0
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1.5.12 Let T be an anisotropic torus, and end@iy and7, with Haar measures such that
Zp ~ A% andTx ~ A% as measure spaces. Enddw with the discrete measure. This
defines a Haar measure & Za \ Ta as quotient measure. We call

frg) = [ fg)di

TrZa\Ta

thetoroidal integral of T (evaluated af). By Lemma 1.5.4 the integral converges for all
f eAandg € Ga.

If T is a split torus, then endoWiy, ~ A* & A* with the product measure @f*.
Further letZ, carry the same measure as before and’jetcarry the discrete measure.
This defines a quotient measure BpZa \ Ta. Let B and BT be the Borel subgroups
that containT’, and letN and N7, respectively, be their unipotent radicals. Note that
Tr Za\ Ta is not compact, but according to Theorem 1.5.10, bbth fy and f — fyr
have compact support as functions B Zp \ Ga and B?ZA\GA, respectively. The
toroidal integral of T (evaluated irg) is

1
s = [ (=50 fun) ey
TrZa\Ta
which converges for alf’ € A4 and any choice of Haar measure BAZa \ Ta.

1.5.13 Definition. Let T be a maximal torus ofr corresponding to a separable quadratic
algebra extensio®’/ F'. Then define

Awor(E) = {f € A|VgeGa, fr(g) =0},

the space oft-toroidal automorphic formsand

Ator = ﬂ eA’tor(E) ,
separable quadratic
algebra extension& / F

the space oforoidal automorphic forms

1.5.14 Remark. The spacestr(E) indeed do not depend on the choice of torus in the
conjugacy class corresponding £ because a calculation similar to that fy proves
that for a conjugatd’, = y~'T'y with y € Gr, we havefr, (g) = fr(gy), Whereg, =

yg. Note that the definition is also independent of the choices of Haar measures.

1.5.15 Proposition. For all T and E as above,
Aor(E) ={f € A| VP € H,O(f)r(e) =0},

and
Aor = {f € A |V maximaltoriT < G,V® e H, ®(f)r(e) =0}.

Proof. This follows from Lemmas 1.4.10 and 1.4.110



CHAPTER 2

L-series and Eisenstein series

This chapter introduces the notions and reviews the results from the theory of
L-series and Eisenstein series that are needed in the subsequent chapters.

2.1 Quasi-characters

Quasi-characters ot* that are continuous and trivial di* have a simple description in
terms of invariants oA ™. This section gives an overview with short proofs. For alternative
and more detailed introductions, cf. Tate’s thesis [65] (for number fields only) and [79,
VI1.3].

2.1.1 A continuous group homomorphism: A* — C* that is trivial onF* is called a
quasi-characteon the idele class group*\ AX). If y(A*)CcS' ={z e C||z|c = 1},
then we call it acharacter The productyy y» : a — x1(a)- x2(a) defines a group structure
on the set of quasi-charactefs Together with the compact-open topolo@/becomes a
topological group.

For an effective divisoD = (Dy), let

x(a) = 1foralla € O such that

Ep = el
b {X ‘ Vxe|X].ax=1 (modm?¥)

A quasi-charactey is calledunramifiedif y € Eo.

2.1.2 The choice of an idele, of degreel defines a section for the sequence in paragraph
1.1.5 (by identifyingZ with the subgroupd; = {a;)). We obtain a decomposition

A=A xA;.
Observe that the natural logarithm
In:C*— C/2niZ
is well defined as inverse to the exponential map since it factors @y@miZ. Let e

denote the Euler number. In the gquasi-charatt®r where the idele norm| satisfies
lai| = ¢! = e, the complex number is determined up t62xi/Ing)Z.

23
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2.1.3Lemma. Foranyy € E, andA4, as above, the restrictiomAg is of finite order, and
xla, = | |° with
Inx(ay) 27i

= —7Z).
s Ing (mod Ing )

Proof. Since F*\ A§ is compact, the image Of [z is compact. Sincé\* is totally
disconnected, every quotient Af is totally disconnected. The only totally disconnected
compact subgroups & are the finite subgroups, hengé, x is of finite order. To prove
the second statement, observe tHatis generated by, %encex(al) determines the
group homomorphisny|4, , which then has the form as described as in the lemma.

2.1.4 Proposition. With the notation of Lemma 2.1.3, there is a unigque charaetef
finite order such tha&)|A0x = X|A6< andw(a;) = 1. Consequently, we have

1@ =ow@lal®. o
2.1.5 Bothw ands depend on the choice af. For a different choice’, one obtains

In —Iny(d, 2mi /
s'=s+ x@y x@) (mod %Z) and o' =ow||" 7.
q

Ing

Conversely, for two charactessandw’ of finite order, there isa e C with o’ = w| |* if
and only ifw|xx = cu’|A3.

Define thereal partRey of y as Re. For different choices aof; anda), we have that
| I = w'w~! is a character and thus RE ~ = 0. This shows that the real part gf
does not depend on the choicemgt

2.1.6 Proposition. The assignment

By — (CI°F)VxC/3Z
X — (@[px.5)
given by the decompositign= w | |° of Corollary 2.1.4 is an isomorphism of topological
groups, and endowg ( with the structure of a Lie group.

Proof. By Proposition 2.1.4 and the previous paragraph, eyegyg, is in one-to-one
correspondence with ane C/%‘Z and a quasi-character of F*\Aj that satisfies
w(0X)=1.But F*\A/Ox ~CI°F.

Concerning the topologies, note that the group of character grodp (s in Lemma
2.1.3) is homeomorphic to the unit circ:Bé. Consequently the group of quasi-characters
restricted ta4, is homeomorphic t@/%'z. o
2.1.7 Since 9} is compact and totally disconnected, it is a profinite group ([25, §1.4,
Thm. 1]). By [25, 81.4, Cor. 1], we can descrit& as inverse limit as follows. Define for
every effective divisoD = (D, ) the subgroup

Up = {aec0®f|V¥xe|X|.ax=1 (modmP~)}
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of @ and the finite quotient grou@ p = O, / Up. Together with canonical projections,
the groupsQ p for varying effective divisoD form a projective system. The gro@y is
the projective limit of this system.

By Pontryagin duality ([51, 837, Thms. 39, 40 and 46]), the character group of the idele
class groupF ™\ A* is the union of the character groups Bf\A* /Up. By Lemma
2.1.3, every guasi-character is the product of a charactef Arfor somes € C. Since
| |° € Ep for all s € C and all effective divisord, we obtain:

2.1.8 Proposition. &= |

effective
divisors D

&3]

p. O

2.2 L-series

As reference for this section, consider [65] and [79], but also [61] and [59].
221 Lety e E andS = {x € |X||3ax € OF, x(ax) # 1}, then define

1

Lreo= 11 1asmr

x€|X|-S

whenever the product converges. If no confusion arises, we omit the sulisenmat write

L(x.s).
Recall from paragraph 1.1.5 that A* is a differental idele.

2.2.2 Theorem ([79, VII, 886-7], [55, Prop. 9.26]).The expressioi.(y,1/2 + s) con-
verges ifRes > 1/2 — Rey, is analytic ins, and has a meromorphic continuation to all
s € C, which we denote by the same symhdol,1/2 + s). It has poles in those for
whichy| |I° = | |i1/2, and the poles are of orddr. Furthermore, it satisfies functional
equation

L(x,1/245) = e(x.9)L(x~".1/2 =)
for a certain non-zero factor(x,s). If y € Eo, thene(x,s) = x(c)|c|*.

2.2.3 Remark. We chose to formulate the theorem by, 1/2 + s) instead ofL(y,s)
to emphasise the analogy with the corresponding statements for Eisenstein series as intro-
duced in the next section.

2.2.4 Definition. We call L(y, s) theL-series of the quasi character, and define theeta
functionof F as¢r(s) := L(1,s).

2.2.5 An alternative expression for the zeta function is

tr)= Y N(j))s ,

effective
divisors D
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a sum that converges for Re- 1, where ND) = ¢%9% . If  is a finite unramified
character, i.ew factors through the divisor class group, then

w(D)
Lr(w,s)= E —,
effective N(D)S
divisors D

if Res > 1.

2.2.6 Lety : A — C be a Schwartz-Bruhat function, i.e. a locally constant function with
compact support. Choose a Haar measurA®dmand define th@ate integral

L p.5) = f ¥(@)x(@)al* da .
AX

whenever the integral converges. Define the Schwartz-Bruhat funggiday
Yo = hr(qg—1)"" (volOa)~! chaw, .

2.2.7 Theorem ([79, VII, Thm. 2 and 88 6-7]).The expressior.(y, x,1/2 + s) con-
verges ifRes > 1/2 —Rey. For every Schwartz-Bruhat function and y € B, it is a
holomorphic multiple ofL(x,1/2 + s) as function ofs € C. For everyy € E there is a
Schwartz-Bruhat functiogy such thatL (v, x,s) = L(y,s). In particular if y € Ey, then

L(WO,X,S) = L(X,S)
2.2.8 Theorem ([79, Thms. VII.4 and VII.6]).

(i) The zeta function of is of the form

L(qg™)
(1=g=5)(1—q'~*)

with (T) = £(1,T) a polynomial of degre@g r with integer coefficients that has
nozeroatl =1orT =g~'. In particular, ¢z has simple poles at= 0 ands = 1.

CF(s) =

(i) Foreverys’e Candy = | |S/, there is a polynomia(y, T) with complex coeffi-
cients of degre@gr such that

L(x.q7)

L(x:s) = (1—g=6+0)(1—gl-G+sD) "

This L-series has simple poles a&= —s’ ands = 1 —s’.

(i) For every unramified charactey that cannot be written as|* for somes € C, there
is a polynomial® (y, T') with complex coefficients of degr2gr — 2 such that

L(x.s) = 2(x.q7") .
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2.2.9 Let E/F be afinite Galois extension andg\Nr : A — Ar the norm map. Then
the reciprocity homomorphismy r : GallE/F) — F*Ng,r(A%)\ A% induces an iso-
morphism

rg,r: HOM(F*Ng/p(A%)\A%. S') — Hom(Gal(E/F), S').
If w is a character of GaE/F), then denote by the corresponding character Afy

that is trivial onF> and Nz, ¢ (A%). In particular, sinceZ / F is unramified if and only if
Ox CNg,r(A%), we see thab is unramified ifE/ F unramified is.

2.2.10 Lemma.Let E/ F be a finite abelian Galois extension apc E. Then
Lg(xoNg/r.s) = I1 LF(x@,s)
weHom(Gal(E/F),S!)
as meromorphic functions of

Proof. This follows easily from a formal calculation with Euler products. Since these
converge for large Re this yields an equality of meromorphic functionso

2.2.11 Proposition. Let y € E be of finite order. Then there is an abelian Galois exten-
sion E/F of ordern such thaty(Ng,r (A%)) = 1, and

I Lr(xod,s) =g (s)
weHom(Gal(E/ F),S!)
as meromorphic functions ef If y is an unramified character, thefi/ F is an unramified
field extension.

Proof. The existence of/ F such that the equation holds follows from class field theory
together with Lemma 2.2.10 singgNg,r(A%)) = 1 implies thatLg(y oNg/r,s) =
Lg(1,s) = Eg(s). The last assertion follows from paragraph 2.2.93

2.2.12 Corollary. If y € E is of finite order and not of the forin® for somes € C, then

L(x.00#0 and L(y.1)#0.

Proof. This follows from the equation of the proposition, since béghand ¢g have
simple poles at = 0 ands = 1, and{r occurs precisely once in the product on the left
hand side, so all other factors do not vanish at 0 ands = 1 and in particularL(y, -)
does not. O

2.2.13 Corollary. Let E/ F be a finite Galois extension, aade A* an idele of degreé.
If s is an-fold zero of

1_[ LF(w’S) )

w unram. char.
of CIF, w(a)=1

thens also is at least am-fold zero of
[] Le@oNgr.s).

w unram. char.
of CIF, w(a)=1

Proof. This follows immediately from Theorem 2.2.8 and Lemma 2.2.1@
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2.3 Eisenstein series

Originally, Eisenstein series were defined as modular forms on the upper half plane, given
by explicit infinite sums. With the development of the theory of automorphic forms, these
sums found generalisation in different directions. This section introduces the notion of
Eisenstein series that we will use and states the most important facts in the form we need
it in. As references consider [11], [23], [32] and [41], where the theory is explained for
GL,, or [10], [26] and [48] for more general approaches.

2.3.1 Let B be the standard Borel subgroup of upper triangular matricesyang < E.
The principal series representatiof? (y1, y2) (of 1 and y,) is the space of all smooth
andK-finite / € C%(Ga) thatforall(4 5) € Ba and allg € Ga satisfy

(" 2)e) = 5" @ e re.

The right regular representatiprof Ga on C°(Ga) as defined in paragraph 1.3.1 restricts
to P (x1, x2)- By the equivalence afi5- and #-modules (Proposition 1.4.12F(x1, x2)
is also an#-module.

2.3.2 Theorem.Let y1, y» € E. The principal series representatiadf(yy, y2) is irre-
ducible unlesg, 75! = | |£'.

Proof. This can be proven by reduction to the representation theory over local fields, cf.
[23, chapter 4.B] or [11, section 4.5], as well as the comment on page 355 of the same
book. O

2.3.3 Theorem.LetP (x1, x2) beirreducible. The (x1, x2) >~ P (x. x5) as#-modules
if and only if either
() x1=yxy and x2=yx5 or (i) x1=1x> and y2 = xy.

Proof. See the references in the proof of the previous theorem.

2.3.4 Proposition. 1 € (1, x2) is uniquely determined by its restriction 6.

Proof. This follows immediately from the Iwasawa decompositi@n = Ba K (also cf.
paragraph 4.2.2), and the definition®{ y1, x2). O

2.3.5 Since we consider only automorphic forms with trivial central character, it suffices
to restrict toy = y1 = x5 ', and we briefly write? (y) for £ (x, x ).

Let y € E. A flat sectionis a mapf, : C — C°(Ga) that assigns to eache C an
elementf, (s) € P (x| |°) such thatf, (s)|x is independent of.

2.3.6 Proposition ([11, Prop. 3.7.1]).For every /' € (y), there exists an unique flat
section f, such thatf = f,(0). We sayf" is embedded in the flat sectiofy.
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2.3.7 For the remainder of this section, fixe E, f € #£(x), andg € Ga. Sincey is
trivial on F>, f € £ (y) is left Br-invariant, and we may define

E@.f) = LG* DY f(re).

Y€BF\GF

provided the sum converges. ffis embedded in the flat sectigfy, then put

E(g. f.5) = E(g. fx(5))

for thoses for which the right hand side is defined. ffe Eq and y2 # | |*!, then
P (x)¥ is 1-dimensional by Schur’s lemma (cf. Lemma 3.1.10) and contains thus a unique
spherical vectari.e. anf° such thatf°(k) = 1 for all k € K. Then define

E(g.x.5)=E(g. f°s).

2.3.8 Theorem ([41, Thm. 2.3]).The functionE(g, f.s) converges for everg € Ga
andRes > 1/2—Rey, and is analytic as a function af It is an automorphic form as a
function ofg.

2.3.9 Let N be the unipotent radical of the standard Borel subgrBup G. The constant
termEx (-, f,s) of E(-, f,s) as defined in paragraph 1.5.9 is

ENn(g. f.5) = L(x*.1425) (f(g) + My(s)f(2))
with
M@ = [ £ B)erdb.
Na

cf. [11, pp. 352—-353]. The operatdf, (s) is an intertwining operator, i.e. an isomorphism
of Ga-modules
My(s): LI ) — P17

2.3.10 Theorem ([41, Thm. 3.2]). (i) Asafunction of, E(g, f,s) has a meromorphic
continuation to alls € C. It has simple poles in thosefor which y2| |** = | |i1.

(i) The functionM,(s) : (x| 1°) — P(x'||°) extends to alls except for those
which satisfyy?| |** = 1. If 2| |** # | |=!, thenM, (s) is an isomorphism.

2.3.11 Definition. The meromorphic continuation d( -, f) = E(-, f,0) is called the
Eisenstein series associated fo If y € Ey, thenE(-,y) = E(-,x,0) is called the
Eisenstein series associatedo

2.3.12 Remark. In the literature there is a difference in the normalisation &vhile clas-

sical Eisenstein series for the complex upper half plane were originally defined such that
the centre of symmetry of the functional equation liesatl/2, the literature on automor-

phic forms on adele groups usually defines Eisenstein series such that the centre of sym-
metry lies ats = 0. We stick to the latter, whence ttiefactor L(x2,1) = L((x| |1/*)2.0)

in the definition of the Eisenstein series.
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2.3.13 Theorem ([41, Thm. 3.1]).Lety € E, let f € P (x) be embedded in the flat section

fx(s). Definef = M, (0) f € P(x~') embedded into the flat SeCting—l (s). Then there
is a functionc(y, s) that is holomorphic irs € C such that

My(s) f = c(.8) fym1(=9)
forall y € E ands € C unlessy?| |** = 1.

2.3.14 Theorem ([41, Thm. 5.2]).For every /" € £ (), thefunctional equation

E(-, f.5) = c(x.5) E(-, f,—s)

holds if y2| [>* # | [*!, where f € £(3~1) andc(y.s) are as in the previous theorem. If
X € Eg, then
E(g.1:8) = x*(0) |c[** E(g.x~".—s).

2.3.15 Proposition ([11, Prop. 3.7.3])Let y € E such thaty? # | |1, and f € 2 (y).
ThenE( -, f) is an automorphic form as a function of the first argument.

2.3.16 Since the Eisenstein seriéX -, /) is a sum over left translates ¢f( - ), and this
sum does not interfere with the action#f (which is defined in terms of right translates),
the map
P(y) — A
o= EC./)

is a morphism offf-modules.

2.3.17Leta € A¥ andr = (¢,). Let x> # | [*'. Sincef € P(x) and f € P (1),
Theorem 2.3.13 implies that for evegye Ga,

En(g, f) = L2 (x(@) al'? f(g) + c(x.0) x(@7" |a]'? F(9)),

which equalsE(tg, ) if dega is large enough, see Theorem 1.5.10.
In particular, ify € Ey, then [41, eq. (3.7)] says that

En(t ) = la|"? (L2 D x(@) + X2 L2 ) @) .

If 2> =1, eachL-series on the right hand side has poles and thus the equation is not
defined. However one can calculate with help of the functional equation and [41, eq.
(3.7)] that in this cas& y (1, y) = 2x(a) |a|"/?.

2.3.18 Proposition. Let y € E such thaty? ¢ {1,| |} or let y € ¢ with y2 = 1. If
f € P(x) is nontrivial, thenE( -, f) is nontrivial.

Proof. Choose & € Ga such thatf(g) # 0. First, lety # y~!. Let nowa € A* be of
degreel such thaty(a) # £1. For arbitraryc;,c, € C that do not vanish both, there are
arbitrarily largen such that x(a)"” + c2 x(a)™ # 0. Putz = (¢ ;). Then by paragraph
2.3.17, there is a large such that

E(t"g, f) = En(t"g. f) = LA |a" (f(9)x(a)" +f(g)x(a)_") #0.
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If x = x~!is unramified, we may assume that= f° since we only have to show
that the irreducibler,-modulef (y) maps nontrivially toA. Then by paragraph 2.3.17,
we have for large:,

E("g.x) = En(t"g.x) = 2x@)" |a|"?* f(g) # 0. O

2.3.19 Corollary. Let y € E such thaty? ¢ {1,||=!} or let y € E¢ with y2 = 1. If
f € P(x) is nontrivial, thenE (-, f) has non-compact support.

Proof. This follows from the last proposition. The constant tefig( -, /) of an Eisen-
stein serie€ (-, /) has non-compact support, and differs from the Eisenstein series only
on a compact set (Theorem 1.5.10)o

2.3.20 Letp : A2 — C be a Schwartz-Bruhat function, i.e. a locally constant function with
compact support. Choose a Haar measurZ grand define

Jox(s) 18— /ﬁﬂ((O,1)Zg)x(detzg)|detzgls+‘/2 dz .
Zp

This is a Tate integral and converges forsRel/2—Rey (Theorem 2.2.7). The definition
of ¢ ensures us thaf, ,(s) is smooth and -finite, and because

1|S+l/2

f(p,x(s)((a 3)g) = X(ad_l) |ad— f(o,x(s)(g) )
we havef, ,(s) € P (x| |*). Define the particular Schwartz-Bruhat function

@o = hr(g—1)""(volOF)! chary; .

2.3.21 Proposition. LetRey > 1.

(i) Forall f € £(y), there exists a Schwartz-Bruhat functipn A? — C such that
f= fw,x(o)-

(i) If y e 8o and f = fYis the spherical vector, thefy, ,(0) = L(x%,2s +1) f°.

Proof. In [79, VII.6-VI1.7], Weil constructs for every € E a Bruhat-Schwartz function
¢ such thatf, ,(0) is nontrivial. For a proof of (ii) observe that fgr= e,

Joo.x(0)(e) = /(Po((o,l)z))((detz)|detZ|S+1/2 d- .
Zp

which is the Tate integral fok. (v, y,s) = L(x?,2s + 1), cf. Theorem 2.2.7.

For a proof of (i) observe that, = ¢( - g) is still a Schwartz-Bruhat function for every
g € Ga, andg. f,,4(0) = f,,.,(0) is still a function in#(x). By Theorem 2.3.2, Rg> 1
implies that? (y) is irreducible, and thu&a. f, ,(0) = P(y). O
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2.3.22 Define
E@e. 209 = Y., fox®e)

YEBF\GF

for Res > 1/2—Rey. This definition extends to a meromorphic functionsaf C. Put
E(g,9,x) = E(g,9,,0). The last proposition implies that the class of Eisenstein series
of the form E( -, ¢, y) is the same as the class of Eisenstein series of the fofm f).

For ay € By, we obtain the equalit¥ (-, @0, x,5) = E(-, x,5).

2.4 Residues of Eisenstein series

Where the Eisenstein series have poles, automorphic forms are hidden as the residues at
these poles.

2.4.1 Let y € E with y2 = | |i1, feP(y),andg € Ga. ThenE(g, f,s) as a function of
s has a pole at = 0, which is orderl. Thus the Eisenstein series has a nontrivial residue

R(g. ) i= Res—o E(g. fs) = lim s-E(g. f.5).

which is itself an automorphic forms since manipulations of the first argugeaimmute
with the limit and multiplication bys. Moderate growth (paragraph 1.3.3) will be clear
from Theorem 2.4.2. Define

R(-.x)=Res—¢ E(-.y)

if y is unramified. The functional equation has a natural extension to residues of Eisenstein
series. In particular, for unramified it becomes

R(-.x) = =x*(©RC-.x7").

Lety : A2 — C be a Schwartz-Bruhat function. Then one can also define

R(-,¢0,x) =Res—o E(-,0,%).

From the result for Eisenstein series, one obtains that for epethiere is af € £ (y)
such thatR(-,¢, y) = R(-, f), and vice versa.

2.4.2 Theorem ([24, Thm. 4.19]).Let y = w| [£/? be a quasi-character witw? = 1
and f € P(x),thenR(-, f) = R(e, f)(wodeb as functions orG 4.

2.4.3 Corollary. Let y = w| |*/? be a quasi-character withw?> = 1. Then theJ-

submodulgR( -, f)}rep(y) C A is 1-dimensional. O
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2.5 Derivatives

The space of automorphic forms contains more interesting functions, namely, derivatives
of Eisenstein series. Similarly, there are also functions that play the role of derivatives of
residues and which we simply call derivatives of residues by abuse of terminology.

2.5.1 Fori > 0, Schwartz-Bruhat functiong : A — C andg : A2 — C andy € E define
thederivative of anL-seriesand thederivative of an Eisenstein serias

. di
LO@, x,5) = — L(y,x,s) and
ds?
. di
ED(g.9.2.5) = — E(8.0.7.5)

in the sense of derivatives of meromorphic functions .ofDefine thederivative of the
residue of an Eisenstein serias

. . d
RO(g.¢.0) = lIm —— 5-E(g.¢.%.5)
s—0 dsi
if XZ — | |:|:1.

2.5.2 Lemma. For Res > 1 —Rey,

LO 1s) = f V(@ x@(nlal) af* da.
AX

Proof. Since|al® = ¢Mlal’ = sl \we have
. i
— |a|®* = (In]al) |a|®.
o lal = (injal)'|a]
We have to show thai—[i commutes with the integral. Since this is a local question, we
may restrict to a compact neighbourhood of
We apply standard results from analysis in two steps. First observe that

A= | U with us)= | @P)ox.
S finite set D=(Dy)eS
of divisors

All subsetsU(S) are compact, thus

d! d’

| Sev@r@larda = 45 [ v@r@lal da.
ds? ds’
U(s) u(s)

(This standard result can be found, for example, in [37, Thm. XI11.8.1]. Note that replacing
the compact intervdk, b] in loc. cit. by the compact measure spéte) does not change
the proof.)
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Secondly, we choose a sequefiSg}, o Of finite sets of divisors such thé}, C S, +1
foralln > 0 andA™ = J,,5o U(S»). Write

Juls) = / V(@) x(@ lal’ da
U(Sy)

for short. Ther{ f,,} converges td. (v, x,s). Since we restricted to a compact domain for
s, the sequence

di di
Vol = [ da
A><
converges uniformly. From a standard result about exchanging limits and derivatives ([37,
Thm. XI111.9.1]) the lemma follows. O

2.5.3 Lemma. For Res > 1/2 —Rey,

EO.p.25) = Y. [ ((0.1)z9) x(detzg)(in|detzgl)' [detzg "'/ dz .
Br\GF z,

Proof. The proof is completely analogous to the one of the previous lemnma.

2.5.4 Lemma. For Res > 1/2 —Rey,

ED(g.0.x.5) = 3 pluzg)x(detzg)(In|detzg )’ [detzg [+ dz .
Zp\Za UEF2—{0}

Proof. Let G act onP!(F) by multiplication from the right. The® ¢ is the stabiliser of
[0: 1], and thus we have a bijection

Br\Gr —> PUF) = Zp\(F2—{0}).
g — [0:1]g

SinceZyGBF\GF f(yg) is absolutely convergent for every € £(y| |*) andg € Ga,
([41, Thm. 2.3]), the lemma follows by Fubini’s theorem from Lemma 2.5.&

+1/2

2.5.5 Lemma. For y = w]| | withw? =1 andi > 1,

RO(g.0.0)=lm(i-ECV(g.g.x.9)+5 EV(g.0.1.9). O
§—>
2.5.6 Lemma. Let y € By satisfyy? = 1. If L(x,1/2) =0, thenl/2 is a zero of even
multiplicity.

Proof. Since the divisor class representeddig a square in the divisor class group, cf.
[79, XII1.12, thm. 13],x(c) = 1. Let L®(y,-) vanish atl/2 foralli =0,...,n—1, for
some odd:. We will show that in this case the multiplicity @2 as a zero must be strictly
larger tham:. Taking into account the vanishing of lower derivatives ggg) = 1, then-th
derivatives of both sides of the functional equation are

L™ (x.1/2) = (-1)" L™ (x7".1/2) .
ThusL™(y,s) =0as(—1)" =—1. O



CHAPTER 3

Admissible automorphic forms

Admissible representations 6fy are one of the most important objects in the
theory of automorphic forms. This class of representations is large enough
to contain interesting representations, but it is still small enough to guarantee
that every admissible representation decomposes as an algebraic sum into well-
known components. This chapter describes all possible unramified admissible
subrepresentations of the space of automorphic forms along with the action
of the unramified part of the Hecke algebra on these subrepresentations. The
last section characterises simultaneous eigenfunctions of all unramified Hecke
operators by their eigenvalues.

3.1 Admissible representations

3.1.1 Let V be a subset of the spageof automorphic forms. We use the neighbourhood
basisV of e in Gp as introduced in paragraph 1.3.1 and we use the convention of paragraph
1.4.8 in that we call a subspagecC « invariant if it is invariant under the action &?.

3.1.2 Definition. An invariant subspac&’ is called anadmissible representatioifi the
complex vector spac#g (V) = VX' is finite-dimensional for alk’ € V. An automor-
phic form f € A is calledadmissibleif #(f) is admissible, or equivalently, if for all
K' €V, Hx (f) is finite-dimensional. Thadmissible part oV is the subrepresentation

Vagm = {f € V| f is admissiblg .
Theunramified part oft’ is the subrepresentation
v = (k).
If V"=V, the representatioH is calledunramified

3.1.3 Note that subrepresentations and finite sums of admissible representations are ad-
missible. Thus every element of an admissible representation is admissible and

Vadm = U W.

admissible
representation®¥ CV

35
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Be aware that arbitrary unions of admissible representations are in general not admissible
asshagm IS NOt.
Further we have an alternative description of the unramified pdrt of

y = N W,

subrepresentations
WV with WK =y K

which follows from the fact tha# (V X) is contained in an invariant subspaéec 4 if
W containslV’ K.

We make the following convention: If an invariant subsp&ce 4 is decorated by
more then one label, it is the intersection of the spaces with single label. For example,
Mm=VaamN V™" andAK = A¢ N A N AK.

adm

3.1.4 Remark. There is a satisfactory theory of admissible representations. We add to it
the new terminology “admissible automorphic form” and “admissible part” for the follow-
ing reasons.

Although A,gm itself is not an admissible representation, it is a natural subspace of
A that has a decomposition as a direct sum of subrepresentations, for which we can give
explicit bases and the matrix form of Hecke operators relative to these bases. We will work
out a decomposition fos]y, , from results in the literature.

We will show that the space of unramified toroidal automorphic forms is contained in
the admissible part and it inherits the decomposition. This allows us to investigate it part
by part. One may ask: is the space of all toroidal automorphic forms contained in the
admissible part?

From the theory in Chapter 6, it will follow that a positive answer would imply that the
space of toroidal automorphic forms is admissible. However, this implication does not hold
in the corresponding theory for number fields. There, the space of toroidal automorphic
forms is far from admissible. But it is still interesting to put the question: is the space of
toroidal automorphic forms for a number field contained in the admissible part?

3.1.5 One of the crucial observations in the representation theofxdt that every irre-
ducible admissible representation factors into a restricted tensor product of local represen-
tations. To this end, we recall what the restricted tensor of representations is, where—to
keep it simple—we restrict the discussion to unramified representations.

DefineG, = G(Fx) andK, = G(O,). Choose for every € | X | a G.-representation
Vy and a non-zero vectar? € VXK‘. In particular, VXKX is nontrivial. For finite sets
S C |X|, defineVy as linear combinations of expressions of the f@uy), wherev, € V,
for x € S andv, = v? for x € |X|— S, and which satisfy the relations for finite tensor
products. Then the restricted tensor product o¥/altelative to(v?) is defined as

Rve= U s

xelX| SC|X| finite

Note thatGa acts on®' Vy by (gx).(vx) := (gxvx) and that the isomorphism type of
X' Vy as aGa-representation does not depend on the choide Hf since for a different
choice(w?), we obtain an isomorphism @ »-representations by senditg,) to (vy —
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v? +w?). We will not mention the vectofv?) anymore if we are only interested in the
isomorphism type ofQ)’ V.

An important question is: when is the restricted tensor pro@®ct, an automorphic
representation, i.e. when @'V, isomorphic to a subquotient o? We will recall the
answer for one series of examples, namely, the principal series representations.

Let x, be a quasi-character @, i.e. a continuous group homomorphigff — C*.
Define theprincipal series representatiofiy () of G, as the space of all locally constant
functionsf : G, — C such that for al(* §) € G, and allg € Gy,

(" 5)e) = laa™ petea™ o

together with the representation@f. by right translation of the argument.

If now y € Ey is an unramified quasi-character Af, then the restriction of to
FX c A* defines unramified quasi-charactgrs: F,* — C*, i.e. y is trivial on @7, for
everyx € |X|. In this caseP(y) contains a unique righk-invariant vectorf,? with
£9(e) = 1, and we can form the restricted tensor prodg@tP, () over allx € | X | with
respect ta £.). Sincey is trivial on F*, the restricted tensor produ@®’ #x (xx) is left
G p-invariant, and furthermore the map

® Px(rx) — P (1)
(fx) > ((gx)'_)nxe\X|fx(gx))

is an isomorphism off,-modules.
An G.-representatiorVy is calledunramifiedif Vy = {g.v | g € G,,v € VE*}. In
particular,?y (yx) is unramified ify, is unramified.

3.1.6 If V, is aG.-representation for a plaoe then the Hecke algebt# acts onlV, by

d(v) = /d)(j(h))h.v dh

Gx
where® € #,v € Vy andj : G, — Ga is the canonical inclusion.

3.1.7 Theorem ([11, Thm. 3.3.3]).Let V C AL, _be an invariant subspace that is irre-

adm
ducible. Then there exist irreducible unramifiéd-representationd’, with dim VXK* =1

for all x € | X| such thatV ~ @' V.

3.1.8 Theorem ([11, Thm. 4.6.4]).Let V, be an irreducibleG,-representation such that
v.Xx is finite-dimensional, but not trivial. Then there is an unramified guasi-character
Xx  F— C* so that eithefy, >~ P, (xx) or Vy is I-dimensional ang.v = yx(detg)-v
forall g € G, andv € V4.

3.1.9 Theorem ([11, Thm. 3.4.3]).Let V; andV; be irreducible subrepresentations.4f
ThenV™ ~ V' as #-modules if and only iX ~ VX as #x-modules.

3.1.10 Lemma. For every irreducible representatiol of #, the space/ X is either0-
dimensional]l-dimensional, or infinite-dimensional.
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Proof. Theorem 3.1.9 implies thatX is zero or irreducible ag’x-module. Since¥x is
commutative, we can apply Schur’s lemma ([21, 1.7]), which says that every irreducible
finite-dimensional#x-module isl-dimensional. Hence the proposition.o

3.1.11 Lemma 3.1.10 implies that thE-invariant subspace of an irreducible unramified
admissible representation Isdimensional, and thus the basis vector is an eigenvector
for all ® € #x. We assume eigenvectors to be nontrivial. We calf & 4 an Hk-
eigenfunction with eigencharactey if it is an eigenvector for everp € #Hx with eigen-
valuels(®). Note thatd s : #x — C is a homomorphism of-algebras and thus indeed
an additive character.

3.2 JHg-eigenfunctions

The article [41] of Li describes a decomposition of the space ofifkeeigenfunctions in

4. We state this result and a lemma that is the key for a generalisation of the theorem to
a decomposition of the admissible part. Recall the definitio@ofor x € | X | as defined

in paragraph 1.4.2, and recall that we wite= ¢9%".

3.2.1 Let theEisenstein par€ be the vector space spanned by all Eisenstein series and
their derivatives, theesidual partR be the vector space spanned by the residues of Eisen-
stein series and their derivatives in the sense of paragraph 2.5.1, asnubidal part,
be the space of cusp forms as defined in paragraph 1.5.9. We shall réfext8 @ R as
thecompleted Eisenstein pait follows from Theorem 3.2.2 that the sum is direct.

For i € C, and® € #k, define thespace ofb-eigenfunctions with eigenvalue

ADA) = {f €A O(f) =11},

and for an invariant subspagecC 4, defineV(d,4) =V N A(D,A).
Recall the definitions of the standard Borel subgr@ipand its unipotent radicaV
from paragraph 1.5.7, and defing = #(K / K'(ZaNa B, N K)) for K’ € V.

3.2.2 Theorem (Li). LetA € C, x a place of degred, and K’ € V. Then
A@ VK = (@, 0K & R(@,. 1)K @A, MK

and " )
dim &(®,, )X = hp-degr-rg .

Proof. This is [41, Thm. 7.1], but one should note that Li uses different conventions to
those in this thesis. First of all, Li writes from right to left from our point of view, i.e.
G operates from the right whil& and the Hecke algebra operate from the left. Thus,
elements of55 need to be inverted.

Secondly, in [41], the family of Eisenstein series is multiplied with a certain polyno-
mial such that the poles get resolved and the residues lie within the new family. As a result,
no distinction between Eisenstein series and residues occurs. If one only considers the un-
ramified part asx-module, there indeed is no difference between subrepresentations in
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the Eisenstein part and in the residual part, and they can be described as a continuous
family as will be seen in the following sections.o

3.2.3 Theorem.

(i) Lety € g andy? # | |i‘. The Eisenstein serids( -, y) generates an admissible
representation of.

(i) Lety e Egandy? = | |i1. The residueR( -, y) generates an admissible represen-
tation of #.

(i) Let f € A{f be anJk-eigenfunction. The cusp forrfi generates an admissible
representation of#.

Proof. For (i), the#-module generated b¥( -, y) is isomorphic taP (x). By Proposition
2.3.4 everyf € P(y) is determined by its values at elementskof If K’ € V, then the
index of K’ in K is finite and thus? (y)X" is finite dimensional.

Statement (ii) follows from Theorem 2.4.2.

Statement (iii) is [32, Prop. 10.5]. O

3.2.4 Corollary. If f € # is unramified and¥ ( /) is irreducible, thenf is admissible if
and only if f is an Hg-eigenfunction. o

One may ask what happens if the condition tatf') is irreducible is dropped. The-
orem 3.6.2 below will give a complete description of unramified admissible automorphic
forms.

3.2.5Lemma. LetV be afinite dimensional complex vector space &d” — V alinear
map such that there exists no nontrivial decompositio#’ afito d-invariant subspaces.
Then there is precisely one-invariant subspace ofF of every given dimension smaller
thendimV’.

Proof. This is a consequence of the Jordan decomposition ([21, §93}the sum of a
diagonalisable linear magss and a nilpotent linear mag,;;, which commute with each
other, and this decomposition is unique. Becabiggand®,; commute and the images of
a non-zero vector under these two operators are linearly independent, a subspase of
d-invariant if and only if it is®ss and ®-invariant, but sincebgs is diagonalisable, the
dqinvariance follows from th&,;-invariance.

The sequenc@X, (V) for k > 0 is a filtration ofV whose subquotients have shrinking
dimension, and every sequence ®fj-invariant (or ®-invariant) subspaces df must
be a subsequence. Sinkehas no nontrivial decomposition intb-invariant subspaces,
all subquotients of this filtration are at moktdimensional, and thus there is a unique
sequence ob-invariant subspaces whose dimensions increade byo

3.2.6 This lemma together with Theorem 3.2.2 implies that for every| X |, the Hecke
operatord, decomposes the admissible part into a direct sum of subspaces that are the
(possibly infinite-dimensional) generalised eigenspaces obtheigenfunctions. In the
subsequent sections we shall investigate these generalised eigenspaces for the Eisenstein,
residual and cuspidal part, respectively, which will turn out to be independent of the choice

of x.



40 Admissible automorphic forms KAPTER 3
3.3 The Eisenstein part

We give explicit formulas for the action oFx on Eisenstein series and their derivatives.
They determine théfx-module structure of the spaces that are generated by these func-
tions.

3.3.1 In paragraph 2.3.7, we already saw that for Z, with y2 # | |i1, there is a dis-
tinguished Eisenstein seriéq -, y.s) = E(-, f°.s), where f° € £(y) is the spherical
vector. Up to a constant multiple, these are the only unramified Eisenstein series. We
denote their derivatives in the sense of paragraph 2.5A®y - , y.s).

Define for ally € By, x € | X| and/ > 0 the value

ADGo = ¢ () + (=D p(w)) -

Note that the value oigf)(x) only depends on the parity 6f Defined,(x) = Aﬁf)()() if [
is even and (y) = AL (y) if 1 is odd.

3.3.2Lemma. If y € ¢ with 2 # | |i1, then for every € | X|,

O E(g. 1) = Ax(0) E(g. %) -

Proof. Sincef(y) is irreducible fory? # | |i1, the K -invariants form a one-dimensional
subspace, cf. Proposition 3.1.10. Hence the spherical vg¢&ar 2 (y) is a ®,-eigen-
function for everyx. The action of®, on unramified automorphic forms is described in
[23, 83 Lemma 3.7] or Proposition 4.2.4. With this, we derive

D f0%e) = LU D+ D] SO

beky

22 () £O>e) +qx a5 P x () £0e)
= ¢} () + x N (7x)) £O(e)
A () £(e)

wheree = (1 ) is the identity matrix. Since the Eisenstein series is a maj§-ohodules,
E(-.x) = E(-, f9), has the same eigenvalue AS. O

3.3.3 Proposition. If y € ¢ with y2 # | |il, then for every € | X|,

i

o ED(g. ) = ) (llc) (Ing) 4¢P EQ (..

k=0
Proof. Observe that

d o) s (I+1) s
gkx 1T = (ng) A (x | 1) -

The formula is obtained by taking derivatives on both sides of the equation in Lemma 3.3.2
and applying the Leibniz rule to the right hand side
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3.3.4 Lemma. Lety € E¢. Theny? = 1if and only if A (x) vanishes for all places.
Proof. Observe that for every,, we have
V50 =) = x(m) =0 = ) =y m) = P =1,

Since ther,’s generateF’”* \ A* /O, the quasi-charactey is determined by its values
onther,'s. O

3.3.5 Proposition. Let y € E¢ with x2 ¢ {1.| |='}. Then

{E( ) E(l)(. ) E(Z)(. ’X)’_”}

is linearly independent and spans a vector space on wifighacts. In particular none of
these functions vanishes.

Proof. By Proposition 3.3.3, it is clear that the span of the functions itgrmodule.
We do induction om = #{E(-, 1), EV (-, x).....E®V (-, p)}.

The case: = 1 is established in Proposition 2.3.18.

Forn > 1, assume that there exists a relation

EW(C. 0 = et E" V0 + o4 0B )
We derive a contradiction as follows. For every placeve have on the one hand,

DED(p) = camt PE@V( )+ 4o @ E(-L))
=, Ot Ax(DE®D(- p) + (termsin lower derivatives aE (-, x)) ,

and on the other hand,
®xED (.0 = A0 EP (0 +n(ng) a0 BV () + (lower termg
= (eam1Ax () +n(ngx) A7 () E@V (-, x) + (lower terms .

By the induction hypothesi{E (-, x). EW (-, x),....E®~V(., p)} is linearly indepen-
dent, and therefore

cn—1Ax(X) = en1Ax(x) +n(ngx) AL (X) .
which implies thafi  (y) = 0 for every placer. But this contradicts Lemma 3.3.4.0

3.3.6 Corollary. Lety € E¢ with y2 # | |i1. Then the following are equivalent.
) =1
(i) AL () vanishes for all places.
@iy EMW(-,y) is anHg-eigenfunction or trivial.

Proof. The equivalence of (i) and (ii) is Lemma 3.3.4. For the equivalence of (ii) and
(iii), note that since the elemends, for x € | X | generate}, the functionE( (-, y) is

an Hk-eigenfunction if and only if it is an eigenfunction df, for all x € | X|. But by
Proposition 3.3.3, this only happensiif () vanishes for alk € | X|. O
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3.3.7 Lemma. Let y € Ey such thaty? = 1. Then

ED(-, ) = (ng) 2gr—2) E(-. ).

Proof. Sincey? = 1, the functional equation looks like

E(g,18) = |c[** E(g.x.—5) .
Using|c| = ¢—(2¢#=2) and taking derivatives in of both sides yields
EW(g.xs) = — [e[* EWV(g . —s) + 2(ng) 2gr ~2) |e** E(g.2.~5).
and filling ins = 0 results in the desired equation.o

3.3.8 Proposition. Let y € E¢ with x> = 1. Both

{EC.0, EPC. 0, E9C,0....) and {EWC, 0, EQC. 0, EDC. 0.}

span a vector space on whidfix acts. Ifgr # 1, then both are linearly independent, but
they span the same spaceglf = 1, then the former set is linearly independent and all
functions in the latter set vanish.

Proof. That both sets spaffx-modules follows from Proposition 3.3.3 since by Corollary
3.3.6, for allx € | X |, the valuel (y) vanishes.

The linear independence of the former set can be shown by the same calculation as in
the proof of Proposition 3.3.5, provided one knows thaty) # 0 for somex € | X|. This
holds since otherwise

0 = Ax(y) —A;(X) = 2qyx x(7mx)

for all x € | X|, which contradicts the nature gf

If gr # 1, then Lemma 3.3.7 implies tha ") ( -, y) is a non-vanishing multiple of
E(-, y) and spans thus the same vector spadé(as y). Consequently the latter set in the
Proposition is linearly independent for the same reasons as for the former set. By Lemma
3.2.5, the two sets in question generate the same space.

If g = 1, the vanishing of alE® (-, y) for oddi follows from thei-th derivative of
the functional equation at= 0, which looks like

ED( ) = (1) ED(. . x) + (2gr —2) (terms in lower derivatives O
———

=0

3.4 The residual part

The #x-module structure of the spaces generated by residues of Eisenstein series and

their derivatives behaves completely analogous to the case of Eisenstein series. We extend
the results of previous section to those quasi-characters at which the Eisenstein series have
their poles.
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£1/2

3.4.1 Recall from paragraph 2.4.1 that fpr= w | | Eo with v? = 1, there is the

residue of an Eisenstein series
R(-,y) = lim s-E(-,y,s).
s—0

Itis a non-vanishing function. More precisely, by Theorem 2.4.2, it is a multipiecafet.
We denote the derivatives in the sense of paragraph 2.5Rb- | ).
Recall the definition of . (x), A (x) and/\g)(x) form paragraph 3.3.1.

*1/2 ¢ 5, with w? = 1, then for every € | X]|,

34.2Lemma.lf y =w] |
O R(g.x) = Ax(Y)R(g. x) = w(mx)(gx+ 1) R(g, x) .

Proof. We make use of the corresponding result for Eisenstein series (Lemma 3.3.2). Note
thatE(-, x.s) = E(-, x| [°)if x2||** #| |*'. Since the Hecke operator only manipulates
the first argument oR, it commutes with the variation in We calculate for any place:

®XR(»X) = liI)nos'®xE('»X’S) = .SlinOSAX(X| |S)E("X’s)

= lim Ax(r| )M s EC08) = AGO R0

+1/2

The second equality in the lemma follows from the fact that w| | and from the

factthatw(my) =w (ny) =+1. O
3.4.3 Lemma. Let y € ¢ with y2 = | |=!. ThenA(y) # O forall x € |X|.
Proof. For everyx € |X|, 1 # ¢!, so
A0 = a? (7 ) —x(m) = @y xm) (T =1 # 0. o
3.4.4 Proposition. If y € 2o with y2 = | |!, then
o R (g.p) = zl: (;) (INgx) 7280 (0 R® (. )
k=0
for everyx € | X|, Wherekg)()() are defined as in Proposition 3.3.3.

Proof. The proof is the same as for Proposition 3.3.3. Note that the funetiéi( - , y)
is holomorphic at = 0, so the limit in the definition of the residue and the limit in the
definition of the derivative with regard tocommute. O

3.4.5 Corollary. Let y € E¢ with 2 = | [£'. ThenRM (-, y) is not an eigenfunction of
d, foranyx € | X|. O

3.4.6 Proposition. Let y € E¢ with y2 = | |¥!. Then

{RC-.0. RV 0. RP (- p)...}

is linearly independent and spans a vector space on wifighacts. In particular none of
these functions vanishes.

Proof. The proof is completely analogous to that of Proposition 3.3.5. Lemma 3.4.3 en-
sures us of the fact that_ (y) # 0 for somex € | X|. O
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3.5 The cuspidal part

We collect some general facts about the cuspidal part.

3.5.1 Theorem ([26, Cor. 1.2.3]).For everyK’ € 'V, there exists a lefG r Z5 and right
K'-invariant subsef2 C Ga such thatGrZa\ Q /K’ is finite and for everyf € AX,
suppf C Q.

3.5.2 Theorem ([11, Section 3.3])For everyK’ € 'V, A({(’ decomposes into a finite direct
sum of irreducible’x--modules.

3.5.3 Theorem (Multiplicity one, [11, Thm. 3.3.6]).
If V1, V> C A are isomorphic#-modules, thetv; = V5.

3.5.4 Corollary. A§ admits a finite basis offx-eigenfunctions, which is unique up to
multiples of the basis vectors. o

3.6 Main theorem on admissible automorphic forms

We summarise the discussion as follows.

3.6.1 For y € By, define

EDOC.p if 2 ¢ (L5,
EDC.x)={ RO, p if 2=,
E@ (. .y if y2=1.

andE(-,x) = E@(-,y). Let& ()X c € = € ® R be the span of ED (-, x)}ixo.
Note that by the functional equations for Eisenstein series and their residues, the linear
spaces spanned by the set

{EOC )., EWC 0} and {EQC ¢, E®W( )

are the same for alf € E,. In particular,€ ()& = €(yHX.

3.6.2 Theorem. The unramified vectors of the admissible part6fdecompose as an
FHx-module into
Alm = A5 & D EF.

{x~1}CBo

The finite-dimensional vector spae\i{( admits a basis offx -eigenfunctions, and thus
every Hecke operators acts as a diagonal matrix on this basis. For everyg, and
n>0,{E(-.y).... E®~D (-, y)} is a basis of the uniqué -submodule of dimension
in &(x)X. For everyx € | X|, the Hecke operato®, acts as follows in this basis:
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o if y2 #£1,
A DngaAz o - (B)ng)" AP ()
o, = 0
Ax(X) (rll)(Ian))‘;(X)
o if 2 =1,
00 G)Ing)* 20 (BMINg)? Ax(x)
0
o, =

A (3 ng)Ax (o)
0 0 Ax(x)

Proof. From Theorem 2.3.3, it follows that there is no other linear relation of Eisenstein
series than the one that is given by the functional equation. Thus the direct sum in the
theorem is well-defined as subspaceAdf, .

Propositions 3.3.3 and 3.4.4 imply that for everg Ey, 5(){)" is anJfx-module and
that ®, operates as described in the theorem. Propositions 3.3.5, 3.4.6 and 3.3.8 ensure
that the described bases are indeed linearly independent.

Lemma 3.2.5 proves the uniqueness of thdimensional subspaces in the theorem
and furthermore thatE£@ - D}y x—11cag.iz0 IS linearly independent. Finally, it fol-
lows from Propositions 3.3.5, 3.4.6 and 3.3.8 together with Theorem 3.2.2 that the decom-

position exhauststX, . o

3.6.3 Theorem.LetV C A™ be an invariant subspace. Then

vE=wnaH @ @ VNnEW.
ex~'rCEo

The representatiofy’ is admissible if and only i¥’ X is finite dimensional.

Proof. Note that every irreducible subrepresentatiéfj,, is determined by its isomor-
phism class. The subrepresentationstgf are characterised by the vanishing of the con-
stant terms of all its elements and uniquely determined by their isomorphism type by The-
orem 3.5.3. The subrepresentationsRSf are1-dimensional and uniquely determined by
their isomorphism type by Corollary 2.4.3. The subrepresentatiof8"afniquely deter-
mined by their isomorphism type by Theorem 2.3.3. By Theorem 3.1.9 every irreducible
subrepresentation X, is thus determined by its isomorphism class/és-representation.
SinceV X decomposes into a direct sum of simultaneous generalised eigenspaces of ele-
ments of#k, this yields the claimed decomposition.

The latter statement follows from the decomposition together with Theorem 3.213.
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3.7 Eigencharacters

If f e AKX is anJg-eigenfunction with eigencharactéy, then Theorem 3.1.9 implies
that f is determined by.r. As H#x is generated by elements of the fody and those
that act trivially ons, cf. Lemma 1.4.15, it suffices to know the values(®,). In fact,
we will describe a finite set of places such tifais determined by, r (® ) for those places
X.

3.7.1 SinceAg‘ is finite dimensional, there are only finitely many Hecke operators nec-
essary to distinguish the generatififx -eigenfunctions. The support of cusp forms is
contained in a bounded set and we shall see in Section 5.5 how to make use of this to
distinguish cusp forms from Eisenstein series.

So we may concentrate &K, The Hx-eigenfunctions ircX are parametrised by
Eo, and Ey is identified with quasi-characters on El= F*\A* /0%, soy € By can
be seen as a group homomorphismFCk C*. Forx € |X|, we definey(x) = x(mx)
thinking of places as prime divisors. All expressions of the f¢i for a divisor D will
be considered as the subgroup offC§enerated by the divisor class bf

Now consider the¥x-eigenfunction/ = E( -, y) with eigencharactet r. We have
Ar(®y) = Ax(y) for everyx € | X| and A, can be seen as a functidy — C. Fur-
thermore, A, factors intol, o evy, where ey : Eo — C* is the group homomorphism
x> x(x)andl, : C* — Cis defined by — q,lc/z(z +z71). We will determine the fibres
of 1, by looking at the fibres of the factors gand/,.

3.7.2 Lemma. Letz € C*, x € | X| ands € C such thay;* = z. Then
ev;'(z) = {o] |’ | ® € Eq, Withw(x) =1} .
In particular, #(kerew) = hrd,.

Proof. Since| | € ev;!(z), we have that €¥! (z) = kerew | |*. The kernel of ey are all
X € B¢ with y(x) = 1, and these are nothing else but the characters 6fQk), and this
group is an extension of &F by a finite group of orded, = degx. O

3.7.3 Lemma. The mapl, : C* — C is a rational map that is a double cover ramified
exactly overt1. Its fibres are of the fornfiz,z71}.

Proof. Rationality is clear from the definition. By defining

1(0) = ;@()q}/z(zﬂ—l) = oo, and
l(oo) = lim ¢’ +27") = oo,

the mapl,. extends to a rational mdp : P'(C) — P!(C). Now, /, is ramified if and only
if £1.(z) vanishes. Since

4 o )
lim —q)lc/2(z~|—z 1) = Z“_r)noo q)lc/2(1_z 2) _ ql/Z;ﬁO,

z—00 dz xj
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I is not ramified aboveo, and since it has a fibre of cardinal®yaboveoo, [, isa2: 1-

covering. Forz € C, gi/*(1—z2) vanishes precisely when= +1. The form of the

fibres is now clear since they cannot be larger by the precedimg.

3.7.4 Lemma. Letx € | X| and y € Ey. Then the following are equivalent.

(i) x(x) ==+l

(i) yx factors through the finite grou@l F / (2x).

(i) evx(x) = er(X_l)-

(iv) I, ramifies inevy (y).

WW%QV:4%-

(viy EMW(.,y)is an eigenfunction ob,.
Proof. The equivalence of (i), (ii) and (iii) is obvious, the equivalence of (i) and (iv) fol-
lows from Lemma 3.7.3. For the equivalence with (v), one calculates

(0 = (x0T 4 1(0)) ¢

andy(x)~! + y(x) = £2 ifand only if y(x) = 1. Regarding (vi), observe that Proposi-
tion 3.3.3 and Corollary 3.4.5 imply th&™) (-, y) is an eigenfunction o®, if and only
if A7(x) = 0. Butsinced; (x) = g2/ (eve (x ') —evi (x)), this is equivalent to (iii). ©

3.7.5 Let S C |X| be a set of places, finite or infinite, and define

AS . EO —> II C

x€eS
X = (A00)ses

If a fibre of Ag contains a quasi-charactgr then it contains alsq~! since the fibres
of every A, do so. The question as to whether the Hecke operagraith x € S can
separate functions i6X is equivalent to asking whether the non-empty fibred gfare
not larger thar{y, y~'}.

Define Exg = (eVy)xes and consider the commutative diagram:

1—[ CX (lx)xES l—[ C

xeS xeS
o As imA

Pry
evy pry
Iy
cx C
The map Ey has kernel
kerEvs = ﬂ kerey ,

x€eS
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which is trivial if and only if the classes of the placesSmgenerate CF = F*\A* /O .
Since all elements that differ by an element in the kernel ¢f k& in the same fibre of
(Ix)xes o Evg, and therefore in the same fibre afs, this shows thatS should at least
generate CF for A g to have small fibres.
Define
Cs'(x) = (2x)xes'/(kery N(2x)yres’)

for S’ C S andy € Ey, where(2x),cs’ is considered as subgroup of I

3.7.6 Theorem.Let S be a set of places that generatesF and lety € E,. The fibre of
As(x)is

There is a partitionS = S; U S_ such that
x € By X' (x) = x(x) forx € S; and
1 ()= x"1(x) forxe S_.

It equals{y, x '} unless if there is a partitio = S, U S_ such that

Cs(x) = Cs, () ® Cs_(x)

is a direct sum with nontrivial factors. This can only happen wjpés of finite order.

Proof. Since the kernel of Eyis trivial, this means that’ is in the same fibre ok 5 asy
if and only if for eachx € S,

X'(x)=xx), or x(x)=x"(x).

This allows us to choose a partitigh= S+ U S_ such thaty’(x) = y(x) if x € S+ and
1 (x) = x~Y(x) if x € S_. Thus the first statement.

We are left to prove that if there existsyain the fibre of y that neither equalg nor
11, thenCs = Cs, © Cs_ is anontrivial decomposition angis of finite order. Observe
that for such g/, neitherS, nor S_ is empty.

Define for everyS’ C S the subgroups: = (x)xes’ of Hg = CI F. Then, restricted
to Hs, , we havey’ = y, and restricted tdis_, we havey’ = 1~ L. Hencey? is trivial on
Hs, N Hs_, orinother wordsHs, N Hs_ C kery2. SinceHs, U Hs_ generatedis,
we obtain a decomposition

(HS / (kery* N HS)) = (Hs+ / (kery? N HS+)) e (HS_ / (kery* N HS_)) )
Observe that the assignmeént> /2, induces an isomorphism
Hg [ (kery®> N Hg)) — 2Hg / (keryN2Hg/) = Cs/() .
for every subsef’ C S. Thus we have the decomposition

Cs(x) = Cs () ® Cs_(y) .

On the other hand, each such decomposition that is nontrivial allows us to chgbse a
as above which neither equatsnor y~!. Then the fibre ofA s (y) contains more thap
elements.

Finally note that/s, N Hs_ has finite index in CF. Hencey? is of finite order, and
soisy. O
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3.7.7 Corollary. LetS C |X| generateCl F. Then fory € E, the following are equiva-
lent.
M x=x
(i) The fibre ofA 5(x) contains onlyy.
(i) [, ramifies inev, (y) for everyx € S.
(iv) Ax(x) = Zq,lc/z)((x) for everyx € S.
(v) EMW(., y)is anHx-eigenfunction or trivial.

-1

Proof. Observe that iff = y~!, the fibres described in the theorem contain gniy x~!.
The equivalence of (i) and (ii) follows.

The equivalence of (i) and (iii) follows from Lemma 3.7.4, bearing in mind gha
determined by its values at alle S.

The implication from (i) to (iv) follows by the definition ok, (y). The converse
implication follows from the theorem.

The equivalence of (i) and (v) follows from Corollary 3.3.6.0

3.7.8 Corollary. Let S C |X| generateCl F and lety € Z¢. ThenE(-,x) € R if and
only if there is aw € B¢ with w? = 1 such thatfor allx € S, A, () = w(mx)(gx + 1). In
this casey = o | |F1/2.

Proof. If E(-, ) lies in the residual part, then there isare 2, with w2 = 1 such that
x = ]| |, and Lemma 3.4.2 describes the eigenvalues of residues as desired.
For the converse implication, note thatyif € & is of finite order, then iny’ c S',
and y'~!(x) is the complex conjugate of (x). Thus
OO = ax? (0T )+ 4 () € [-244/7.24,7]
Butgx > 1, hencey, + 1 > 2¢+/? andy, which by assumption hds(x)| = gx + 1,
is not of finite order. Thus by Theorem 3.7.6 the fibrélgfy) contains onlyn | |/2. o

3.7.9 Proposition. If {x1,...,xs,} C | X| represents the divisor classes of a fixed degree
d, then we have foy € E that

qhp (@ +q )E(-,y) if y=|| foraseC,

(Pxy+-- 4Py, VEC- . 0) = { 0 otherwise.

Proof. We choose an idele of degreel, and writey = w | |* with w(a) = 1. Then

hp
D (= Zq”z ) + x(x,))
i=1

d/2 (Z“’ ﬂx, 4 Z“’ 1 7Tx,

- qd/zhp(qd“rq‘ds) Ifw:l,
0 otherwise.

Ty, r)

TCx;

The last equation follows from the general fact that for a charagtefra finite group@,
deG w(g) equals #% if @ is trivial and equal® otherwise. O
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3.7.10 The rest of this chapter is devoted to a description of finite Sets |X| such
that the corresponding Hecke operators are able to distingéisteigenfunctions in the
completed Eisenstein part. The fibres of Theorem 3.7.6 that are largefthan'} for
somey € Ey can be prevented § generates CF and satisfies the property:

For every partitionS = S U S_, either2CIF = 2(Sy) or2CIF = 2(S_). (%)

We need some group theoretic preparation.

3.7.11 Lemma. Let H be an finite abelian group. Then for every partitibh= S, U S_
there is either anx; € Sy such that

2H =2(S+ —{x4})

oranx_ € S_ such that
2H =2(S_—{x_}).

Proof. The structure theorem for finite abelian groups states thas isomorphic to a
product of cyclic groups of prime power order, which is unique up to permutation of the
components. In particular the numbeof cyclic factors is an invariant off . We will do
induction onn.

If n =0, note that the trivial group satisfies the lemma for trivial reasons.

If n >0, H is isomorphic toH’ x (Z/mZ) for some integem > 2 and some subgroup
H’, which hasn — 1 factors, which we assume to satisfy the lemma.mlt 2, then
2H = 2H’ and the induction step is establishedsf> 2, note thatZ/mZ has at least
two generators, namely,and—1. Either S or S_ must contain elements that satisfy the
lemma forH’ x {0}, sayS, does so with respect to some € S.

If S+ further contains an element &f’ x {+1}, then2 H = 2(S+ — {x+}) becauseéd
is generated by the union &f’ with an arbitrary element off’ x {+1}.

If not, thenH’ x {£1} C S_. In both cases thall’ is trivial and thatH’ is not trivial,
one sees thal’ x {41} with one element excluded generaféswhat in particular implies
the assertion of the lemma. Thus we have completed the inductian.

3.7.12 Remark. Jakub Byszewski found the following alternative proof of Lemma 3.7.11.
First observe that it holds for trivial reasons for the grodpg&Z and(Z/2Z2) x (Z/2Z).
For all other groups it follows from the following more general lemma.

3.7.13 Lemma. Let H be a finite group (not necessarily abelian) that is not isomorphic
toZ/2Z or (Z/22)x (Z/2Z). Let H = S; U S, be a partition. Then there exists either
anx; € Sy such thatd = (S; —{x1}) oranx, € S, such thatd = (S, — {x»}).

Note that bottZ /2Z and(Z/2Z) x (Z/2Z) do not satisfy the lemma if partitioned into
subsets of equal cardinality.

Proof. The majority of cases is excluded by the observation that a sSbsktardinality

#S > %#H necessarily generatd$ by Lagrange’s theorem. There are only three cases
left, which we will consider separately. Without loss of generality, we may assume that
#S1 = #5,.
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Case (i): #H =2n+1isodd and#S; =n+1.
Since2 is not a divisor of the group order, the largest possible subgroué#lﬁselements.
If n =#S1—1> %#H, then the lemma holds by Lagrange’s theorem. If not, then
2ntl  This is the case if and only if < 1, which in turn means that# < 3. If H
hasl element, then the lemma follows trivially. H has3 elements, thei§; contains2
elements, one of which generatés

Case (i): #H =2nisevenandtS, =n+1.
If there is anx; € S; such thatd’ = S; —{x;} is precisely a subgroup of indé&xin H,
thenS; has to contain the neutral element H. But S; —{e} is not contained in any
proper subgroup off .

Case (iii): #H =2niseven andtS; = #S, =n.
Without loss of generality we may assume tha S,. ThenS; cannot be contained in a
proper subgroup and must generatelf there is anxy € S such thatS; —{x} generates
a subgroupH, of index?2 in H, then Hy = (S; —{xo}) U {e} by counting elements. If
furthern = #H, > 3, then there would be an; € S; — {x¢} C Hy such that we have
Hy = (S1—{x0,x1}). ButthenH = (S; —{x1}). There are only two possibilities left:
n=#S1=1o0orn=#S,=2. If n =1, thenH ~ Z/2Z, which we excluded. Ifi =2,
then eithetHd ~ (Z/22) x (Z/2Z), which we excluded, o ~ Z/4Z, generated by some
element € H. In the latter casé, is the unique subgrou, a2}, thusS; = {a,a>}. But
botha anda® generated. O

3.7.14 Proposition.If CI¢ F = S, U S_, then as subsets @I F, either2(CI¥ F) =
2(S4)or2(Clé F)y =2(S_).

Proof. If d = 0, then the proposition follows immediately from the last lemma. Assume
d #+ 0. Choosing &, € CI¢ F, we obtain a bijection GIF — CI° F by subtracting.
This induces a partition €IF = S US’. By possibly exchanging andS_, the lemma
implies that there is a, € S/ such tha CI° F = 2(S —{z/.}). f z4 = z/_ + 2o, then
2C0 F®2(z1)=2(CI¢F). O

A field extensionE/ F is calledgeometridf the constant field o has the same num-
ber of elements as the constant fieldraf The following is a consequence of Chebotarev’s
density theorem.

3.7.15 Theorem ([55, Thm. 9.13B]).Let E/F be a finite abelian separable geometric
field extension antNg,r : CIE — CIF the norm ofE over F extended to the divisor
class group. Then for every elemenGhF /N, r (CI E), there is an integed, such that
for everyd > dy, there is a prime divisor oveF of degreed that represents this element.

3.7.16 Theorem.There is an integetl, such that every divisor class i@l F of degree
larger thand is represented by a prime divisor.

Proof. Let D denote a divisor class of degrée Then by class field theory, there is an
finite abelian separable geometric field extengigiF with Galois group CF / (D), and
everything follows from Theorem 3.7.15. 0

3.7.17 We can now choose a set of generatdmsith property ) as follows. Begin with
afinite set of generators of Eland add places that represenf &l such that/ is coprime
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to the degree of each of the previously chosen generators. Theorem 3.7.16 ensures us of
the fact that there are such places provided large enough.
This setS satisfies ) because for every partitioh= S U S_, one of bot2 (S ) and
2(S_) contain2(CI¥), say2(S. ) does. IfS, further contains any other other element of
S, then2CI F = 2(S, ), otherwiseS_ generates CF. This establishesx(.

3.7.18If F is a rational function field, then & ~ Z. Let x be a place of degreé.
Then{x} generates GF, and obviously it fulfills ). Thus it suffices to calculate only the
d,-eigenvalue to recognise &k -eigenfunction in the completed Eisenstein part.

If F isthe function field of an elliptic curve, then the set of all places of debresich
represent precisely €F, generates Qf . Proposition 3.7.14 implies that) holds. This
makes it possible to distinguish th#éx -eigenfunctions in the completed Eisenstein part
by the action of the Hecke operatabs wherex varies through the degree one places. We
will see in Chapter 8, however, that these Hecke operators cannot distinguish cusp forms,
and it will be necessary to consider the operatbgsor placesx of degree.



CHAPTER 4

Graphs of Hecke operators

To each Hecke operator we associate a certain graph with extra structure that
will be one of the main tools for the theory of toroidal automorphic forms. Au-
tomorphic forms can be reinterpreted as functions on the vertices, and the edges
together with a weight function symbolise the action of the Hecke operator on
automorphic forms. We investigate the graphs associated to generators of the
unramified Hecke algebra in more detail and apply the theory of Bruhat-Tits
trees to these graphs.

4.1 Definition

Let G = GL, and K’ C Ga be a compact and open subgroup. We will wijigg €
GrZa\Ga /K’ for the class that is represented §y= Go. Other cosets will also oc-
cur but it will be clear from the context what kind of class the square brackets relate to.

4.1.1 Proposition. For all ® € #g and[g] € GrZa\Ga/ K’, there is a unique set of
pairwise distinct classel],...,[gr] € GFZa\Ga/ K’ and numbersny,...,m, € C*
such that for allf € AX",

O(f)(g) = Y mif(g).
i=1

Proof. Unigueness is clear, and existence follows from Lemma 1.4.11 after we have taken
care of putting together values gfin same classes @ r Za \ Ga / K’ and throwing out
zeroterms. O

4.1.2 Definition. With the notation of the preceding proposition we define

Uo,k([g]) = {([g].[gi].mi)}i=1.....r -

The classefg;] are called theb-neighbours ofg] (relative toK”).
Thegraph¥$s k- of ® (relative toK’) consists of vertices

Vert9e g = GFZA\GA/K/

53
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and oriented weighted edges

Edgebeo.x = U U,k (v) .

veVert9g g1

4.1.3 Remark. The usual notation for an edge in a graph with weighted edges consists of
pairs that code the origin and the terminus, and an additional function on the set of edges
that gives the weight. For our purposes, it is more convenient to replace the set of edges
by the graph of the weight function and to call the resulting tripels that consist of origin,
terminus and the weight the edges&yf .

4.1.4 We make the following drawing conventions to illustrate the graph of a Hecke op-
erator: vertices are represented by labelled dots, and an(edgen) together with its
origin v and its terminug’ is drawn as

m
o ——0
/

v 14
If there is precisely one edge fromto v’ and precisely one from' to v, which we call the
inverse edge, we draw

m ! ) m ) m
o "o inplace of @/ and in place of
1% 1% v Vv v v

4.1.5 By the very definition of the graph @, we have forf € AX" and[g] € Gr Za\ Ga/ K’
that
()= Y. mf(g).

([gl.[g’].m")
€Edgelp k-

Hence one can read off the effect of a Hecke operator on the value of an automorphic
function from the illustration of the graph:

[gr]

4.1.6 We collect some first properties: Singée= | ) #k, with K’ running over all com-
pact opens ifGa, the notion of the graph of a Hecke operator applies todmy# .

The set of vertices of the graph of a Hecke operdtar #x- only depends oK', and
only the edges depend on the particular chabemhere is at most one edge for each two
vertices and each direction, and the weight of an edge is always non-zero. Each vertex is
connected with only finitely many other vertices.

The algebra structure d¥x- has the following implications for the structure of the set
of edges. We define the empty sumias
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4.1.7 Proposition. For the zero elemeri € #k-, the multiplicative unitl € #g,, and
arbitrary @, ®, € Hk/, r € C* we obtain that

Edgeboxr = 0,
Edged .k = {(v’ v, 1) }veVertﬁvi/ ’
Edgefe, 10,60 = {(v.v'.m)|m = Z m  + Z m" #0},
(v.v/.m)€EdgeSy k1 (v.0/.m")EEdgeSq, k7
Edge§r¢1,K’ = {(v,v/,rm) | (v,v’,m) S Edge&pl’p} , and
Edgefo, «a,.xr = {(v.v'.m)|m = Z m'-m” #0}.

(v,v”,m’)eEdge§¢1 K’
and
(v”,v’,m”)eEdgegq)z_K/

If K" < K’ and® e H#g, then alsod € H#k~. This implies that we have a canonical map
P : 89 x» — Yo k', Which is given by

Vert 9o k7 = GrZpa\Ga/ K" i) GrZpa\Ga/K' = Vert 9o k/

and

EdgeﬁqK” i) Edgeﬁq)’K/.
(v,v',m"y  +— (P(),PQ),m)

4.1.8 One can also collect the data 66 k- in an infinite-dimensional matri/¢ -,
which we callthe matrix associated t§s x/, by putting(Me x/)y » = m if (v,0",m) €
Edge$s.x/, and (Mo k') ,» = 0 Otherwise. Thus each row and each column has only
finitely many non-vanishing entries.

The above proposition implies:

My gk = 0, thezero matrix,
M,k = 1, theidentity matrix,
Mo, +o,, k0 = Mo, k' + Mo, k',
Mr<I>1,K/ = qu;.l’K/ y and
M<I>1*d>2,K’ = M<I>2,K’M<I>15K' :

Thus, we may regardx- as a subalgebra of the algebra@finear maps

b c — ¢ c

GrZa\Ga/ K’ GrZa\Ga/ K’
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4.2 Unramified Hecke operators

From now on we will restrict ourselves to unramified automorphic forms and unramified
Hecke operators. Recall from Lemma 1.4.15 that the Hecke operajotsgether with
elements that act ason A% generate¥x as a complex algebra. By Proposition 4.1.7

it is thus enough to know the graphs of generators to determine all graphs of unramified
Hecke operators. We use the shorthand notafipifor the graph§s .. x, and U, (v) for

the @, -neighboursis . x (v) of v.

4.2.1 We introduce thélower x convention"that says that a lower indexon an algebraic
group defined over the adeles Bfwill consist of only the component at of the adelic
points, for exampleG, = Gr,, Zx = ZF,, etc. Analogously, we havk, = Gg, .

The“upper x convention”means that a upper indexon an algebraic group defined
over the adeles of will consist of all components except for the onexatin particular,
we first defineA~ = ]_[/y#x Fy, the restricted product relative ®* =[], ., O, over all
placesy that do not equak. Then examples for groups with upperare G* = Gax,
Z* = Zax, etc. Putk* = G(px.

4.2.2 For the standard Borel subgrodp< G, we have the local and the global form of
thelwasawa decompositiomespectively:
Gy = ByK, and Ga = BaK.

Recall from paragraph 1.1.2 that the uniformisesse F are considered as ideles
embedded vig* C F C A*. Also, we embed, viax, C Fy CA, thus an elemerit €
kx Will be considered as the adele whose componenisb and whose other components
are0. Let P! be the projective line. Define fav € P! (k),

ng(”x ’1’) if w=[1:5] and sw=(1 n) if w=1[0:1].

Note thatt,, € Ga depends on asw is an element oP! (k).

4.2.3 Lemma.

Proof. It is clear thatK(”x 1)K is a disjoint union of cosets of the forgK for certain
& € Ga. The gquestion can be solved componentwise at each placé y # x, then
Ky (' ,)K, = K, as desired.

If y = x, then by the Iwasawa decompositigp,can be chosen to be upper triangular.

Since
det(k (”x l)k’)

for k, k' € K, and all entries of, have to lie in®,, the only possible cosets are the ones
occurring in the lemma. On the other hand they indeed occur since

(0 )=

= |7Tx|x
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1\ [7x 1y _ (1 -
1 1/\1 a Ty )
Since we normalise the operatdps with the factor(vol K)~!, the weights of edges in

g, are positive integers. We shall also refer to them asrthkiplicity of a ®,-neighbour.
The above lemma implies the following.

and

4.2.4 Proposition. The ®,-neighbours ofig] are the classe$gé,,] with &, as in the
previous lemma, and the multiplicity of an edge frggh to [g’] equals the number of
w € P (ky) such thatig&,] = [¢']. The multiplicities of the edges originating ig] sum
up to# Pl (ky) = g, + 1.

4.3 Examples for rational function fields

This section contains first examples of graphs of Hecke operators for a rational function
field, which can be calculated by elementary matrix manipulations. It serves to give an
impression of what the graphs of Hecke operators look like, but is not needed for the
subsequent theory. Hence, we do not show all calculations that led to the pictures as
presented. The reader will find more figures in section 7.3.

Let F be F,(T), the function field of the projective line ovét,, which hasg + 1
rational points and trivial class group. Fix a placef degreel.

4.3.1 Using strong approximation for SL(cf. Proposition 4.4.11, wherg is trivial in
this case), we see that the map obtained by adding the identity raatrixll placesy # x,

F'\Gx/ZxKy — Gp\Ga/KZp,
[gx] — [(gx.e)]

is a bijection.
We define an empty sum s Recall the notation:

e O =(),.,(0,NF)isthe collection of all elements iff of the formY.0_ b;xl
with b; € F, fori =m,...,0 for some integem.

e K, = GL,(0y), where@, is the collection of all power serieg,.20 b,-njc with
bi e By fori > 0.

e I'=GFr NK*=GLy(0%) (cf. Remark 4.4.9).

4.3.2 For better readability, we write for the uniformiserr, at x andg for a matrix

in G,. We sayg ~ g’ if they represent the same cldg$ = [¢'] in T\ Gx/ Zx K, and
indicate by subscripts to~’ how to alter one representative to another. The following
changes of the representatigeof a class[g] € I'\ Gx / Zx K, provide an algorithm to
determine a standard representative for the class of any ngadries . :
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(i) By the lwasawa decomposition, cf. paragraph 4.2.2, every claBs, i, / Z K
is represented by an upper triangular matrix, and

0 a EET - P

(i) Writea/d = rx" for some integen andr € O, then withb’ = b/d, we have

ra® b N ra” b\ (r7! (7"
1 /% 1 1] = 1]

(i) I1f ' =Y., bin' for some integem and coefficients; € F, fori > m, then
T Yism bin! N " ZiZmbiﬂi I =77 (Y isn bir')
1 /Kx 1 1
_ (71" bnm —i—...—i—bn_ln”_l)
= | )

(iv) One can further perform the following step:

1
1 —(bpra™+...+bon®) (n" bmnm+...+bn_1nn_1)
1 1

r\
_ (7‘[" b1ﬂ+...+bn_1ﬂnl>
1 .

(n" b+ ...+ bn_ln”_l)

V) Fb=byw+...4+by_y 7" 1 £0, thenb = sz¥ with 1 <k <n—1,s € 0X and

" snk - 1\ (=" s=k\ (s7in 7k —s?
1 ) r\/zekx \1 1 sTig=k | \snn=k 1
an—2k 1ok
- )
(vi) The last trick is

() e T ) ()= 07)

Executing these steps (possibly (iii)—(v) several times) will finally lead to a matrix of

the form
J— 7T—n
Pn = 1

for somen > 0, and p, ~ p,, for positive integers:,m if and only if n = m, as can

be proven by geometric methods (Example 5.4.11 and [60, Example 2.4.1]) or by more
tedious elementary methods. We denote the clggsgddy ¢, (with nx considered as
divisor, cf. 5.2.2) and derive:
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4.3.3 Proposition. For ® € Hg, Vert§e x = {cax}n>0-

4.3.4 Example (Graph of0 and 1). Following Proposition 4.1.7, the graphs for the zero
elemen® and the identityl in #Hg are given in Figures 4.1 and 4.2, respectively.

[ ] [ ] [ ] [ ]
<] Cx Cox C3x

Figure 4.1: The graph of the zero elementiix

o O O O

o Cx C2x C3x

Figure 4.2: The graph of the identity iffx

4.3.5 Example (Graph of®,). Let &, be as in Lemma 4.2.3. We are only concerned
with thex-component of,,, which we shall also denote by the symBglin this example.
Proposition 4.2.4 describes the edges, and the reduction steps (i)—(vi) in paragraph 4.3.2
describe how to find the standard representggivior the class ofp; §,,:

e Fori >0andw =[0:1],

i 1 a—G+1) _
sz[o:l] = 1 . EI\)' 1= Di+1 -

e Fori =0andw = [1: bo] with by € Fy,

_ (7 b i
poéw—( 1)(iv)( 1)(vi)pl'

e Fori > 1andw = [1: bo] with by € F,

e fa T by 7D _
N I eI

We conclude thaty = ¢y, is connected ta, = c1, with multiplicity ¢ + 1, and for
positiven, ¢, is connected to(,_p), with multiplicity ¢ and toc, 41), With multiplicity
1. Thusg, can be illustrated as in Figure 4.3.

qg+1 qg 1 qg 1 q-l

o Cx Cox C3x

Figure 4.3: The graph ob,
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Cx C3x C5x

Figure 4.4: The graph ob, for a placey of degree2

4.3.6 Example (Graph of®,, for y # x). If we want to determine the edges gf for a
placey of degreed that differs fromx, we have to find the standard representatiyéor

elements
Di (”y b) withb ek,, and p; (1 ) .
1 Ty

As F has class numbdr, we can assume that, € F' has nontrivial valuation iy andx
only. Lety € Gr denote the inverse of one of the matri¢és ’f),(l =, )- For all places
z # x,y, the canonical embeddir@r — G, sends to a matrixy; € K, sincev; () =0
by assumption. Thus multiplying with € G from the left, which operates diagonally
on the components of all places, and multiplying componentwisepyithe K, from the
right for all z # x, y, gives an element that is nontrivial only in(also compare with [23,
Lemma 3.7]). The matrices that we obtain in this way are:

(ﬂff bo+-++bg_ywd!
1

)p,- with b; ek, fori =0,...,d—1, and (1 nd)p,-.

X

The reduction steps (i)—(vi) of paragraph 4.3.2 tell us which classes are represented, and
we are able to determine the edges similarly to the previous example. Thus we obtain that
%, only depends on the degree pf Note that ify is of degreel, then§, equalsg,.
Figures 4.4, 4.5, 4.10, and 4.13 show the graphs for deg@réed and5, respectively.

Figure 4.5: The graph ob, for a placey of degree3
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2q 2q
g+1 7> 1 7> 1
112 +q ® °
€0 Cox C4x
2q 2q
1 2 1 2 1
*+2q i o i o
Cx C3x Csx

Figure 4.6: The graph ab?2

4.3.7 Example (The graph of powers ofb,). It is interesting to compare the graph of
@, with degy = d with the graph of®?. The latter graph is easily deduced frain by
means of Proposition 4.1.7. Namely, a vertéis a®?-neighbour of a vertex in §¢5{,K
if there is a path of lengthd from v to v’ in gy, i.e. a sequenc@yg,v1,...,vy) of vertices
in g, with vy = v andvy; = v’ suchthatforall =1,...,d, there is an edg&;_1, v;,m;)
in g,. The weight of an edge from to v’ in the graph ofgf is obtained by taking the
sum of the products; -...-my over all paths of lengthl from v to v’ in §,.

Figure 4.6 and 4.7 show the graphs®} and ®3, respectively, and we see that for
degy = 2, we haved? = ®, +24- 1, and for deg = 3, we haved? = ¢, +3¢- d,.

4.3.8 Remark. In these first examples, we saw graphs that contain a finite subgraph that is
irregular such that the complement follows a regular pattern that repeats periodically. This
behaviour is common to all graphs of Hecke operators, and when we illustrate a graph,
we will always picture the irregular part and at least one complete period. The geometric
methods in the next chapter will give an explanation for this periodical behaviour of graphs
of Hecke operators relative 6.

320 @
3

¢ +24° THIC/N 34 k

5 Cox Cs5x C8x

g +3q

P43 +2q . 1 ¢

Cx

€0

Figure 4.7: The graph b3
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/ /
Cx [0:1] Cox,[0:1]

Figure 4.8: Graph o, , as defined in Example 4.3.9

4.3.9 Example (The graphs of two ramified Hecke operators)lt is also possible to de-
termine examples for Hecke operatorsity by elementary matrix manipulations, when
K’ < K is a subgroup of finite index. We will show two examples, which are illustrated in
Figures 4.8 and 4.9. We omit the calculation, but only point out why the crucial differences
between the two graphs occur.

ForK'={k € K | kx = (') (mod )}, the fibres of the projection

P: GF\GA/ZAK/—>GF\GA/ZAK

are given byP ! (co) = {[po]} and for positiver, by P! (cnx) = {[pnxPw ]} wept () With

O1:e) = (1 §) anddyo.) = (; !). The union of these fibres equals the set of vertices of a
Hecke operator i#g-. We shall denote the vertices by = [po] andcy,,, ,, = [pnxPw]

for n > 1 andw € P!(kx). Note thatGg, = G, acts onP'(k,) from the right, so if

y € Gr,, thenw — wy permutes the elements Bf (kx).

The first Hecke operatab, , € Hk- that we consider iévol K / vol K') times the char-
acteristic function ok’(™ | )yK’, wherey is a degree one place differentt@ndy € Ga
is a matrix whose only nontrivial componentyis € Gg,. (The factor(vol K/vol K’) is
only included to obtain integer weights). Sin&&(™ |)yK’ c K(™ ,)yK, the graph
of @}, , relative toK’ can have an edge fromto w only if §, has an edge fron® (v)
to P(w). BecauseX; = K, we argue as foK thatK'(™ |)yK’ = [wept (o)) w?K'".
Applying the same methods as in Example 4.3.6, one obtains that

ulb/y.y,K’(C(,)) = {(6676;,w’ 1)}wEP1 (kx)
and for everyr > 1 andw € P! (k) that

uq?"y,y,K’ (C;tx,w) = {(C{)’Czn+l)x,wy7 1), (Cé’czn—l)x,wy"n} .

For the case that equals the identity matrix, the graph is illustrated in Figure 4.8. Note
that for general, an edge does not necessarily have an inverse edgewsjricdoes not
have to equaiv.
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- 1
Coxf1:g-1] f

Cgc, [0:1] C/2x.[0:1]

Figure 4.9: Graph o®’; as defined in Example 4.3.9

The second Hecke operatdf, € #x- is (vol K/ vol K’) times the characteristic func-
tion of K'(™ |)K’. This case behaves differently, sink& and K are not equal: We
haveK’(™ |)K’ =11y, (™ °7¥)K'. This allows us to compute the edges as illustrated

in Figure 4.9. Note that fon > 1, the vertices of the form;x [1:0] andc;x (0:1] behave
particularly.

C5x

Figure 4.10: The graph eb, for a placey of degreet



Figure 4.11: Graph ob, ; for GL;

Figure 4.12: Graph ob, , for GL;
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4.3.10 Example (Two graphs forGLs3). There is a generalisation of the notion of the
graph of a Hecke operator to other algebraic groups. We carry out two examples for
G = GLs. The notions of automorphic forms and Hecke operators as given in Chapter
1 transfer literally to Gb. Let K= G@A be the standard maximal compact subgroup of
GA, 7 < G the centre and? the Hecke algebra. The elements(bf \GA/ZAK are the
double cosets

CNi’j = 5}:‘ (”_’n_j )’Z’AK
1
fori > j > 0. The role of®, is played by the two elements

D4 = charE(n 1 1)? and D, = chatE(n ,, 1)?

Proposition 4.2.4 generalises to &for certaing,,, but the indexw runs over the Grass-
mannianGr 3(ky) for cbx 1 and overGr, 3 (k) for d>x 2. The reduction steps (i)—(vi) of
paragraph 4.3.2 also generalise, allowing us to calculate the graph,g,loand <I>x,2 in

the same way as we did fdr, in Example 4.3.5. The result is shown in Figures 4.11 and
4.12. Itis interesting to remark that the duality betw&en ; andGr 3 is reflected in the
graphs.

Figure 4.13: The graph ab,, for a placey of degrees
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4.4 Connection with Bruhat-Tits trees

Let x be a place. In this section we define maps from so-called Bruhat-Tits tre&s to
This will enable us to determine the componentsgof We let&,, be as in Proposition
4.2.3.

4.4.1 Definition. TheBruhat-Tits treef, for F, has vertices
VertTy = Gy /KyZy
and edges

EdgeT: = {([g].[¢g']) | 3w € P'(kx), g =g'6w (MOdKyZy)}.

4.4.2 For eachh € Ga, we define a map

Wen: T —

by
VertT, =Gy /KxZx, —> Gp\Ga/KZp=\Vertg,
gl  +—  [hg]

and
Edge7, — Edges,

(g].1g'D ¥ ([hgl.[hg'].m)

with m being the number of verticgs”] that are adjacent f@] in 7 such tha@, ,([g"]) =
\I"x,h([g/])'

By Proposition 4.2.4 and the definition of a Bruhat-Tits trég,, is well-defined and
locally surjective i.e. it is locally surjective as map between the associated simplicial
complexes off;, and¥g, with suppressed weights.

To explain this in more detail: The associated simplicial complex gives the notion of
a component. Two vertices lie in the sac@mponentif there is a sequence of vertices
beginning with the one and ending with the other vertex in question such that each two
consecutive vertices in this sequence are connected by an edge. Edges lie in the component
of their origin. A map is locally surjective if for each vertex or edge in the image of that
map, every other vertex and edge of the corresponding component also lies in the image.

Since Bruhat-Tits trees are indeed trees ([60, 1.1, Thm. 1]), hence in particular con-
nected, the image of eadh, , is precisely one component §f.

4.4.3 Proposition. If (v,v’,m) € Edge¥y, then there is an’ € C* such that(v’,v,m’) €
Edges,.

Proof. Let (v,v',m) € Edge$,, and leth € Ga represenv = [h]. SinceW, 4 is locally
surjective andb, ,([e]) = v if e is the identity matrix, it is enough to show that for every
edge(1,w), there is also the eddev, 1) € EdgeTy.
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But this follows from

Ermboy = (nx ll))(l nx) = (nx bjzcx) = (1 1) (mod Ky Zy)

5[0;115[1:01=(1 nx)(nx 1)2(”x ”x)

4.4.4 Remark. This symmetry of edges is a property that is special to unramified Hecke
operators forlG = GL,. In case of ramification, the symmetry is broken, cf. Example
4.3.9. For other algebraic groups, even unramified Hecke operators occur that have edges
without an inverse edge, cf. Example 4.3.10.

and

(‘ 1) (mod K, Z.,) .

O

4.4.5 Theorem ([39, Thm. E.2.1]).SL, has the strong approximation property, i.e. for
every placex, SL, F is a dense subset 8, A* with respect to the adelic topology.

This theorem was first proven by Martin Kneser ([33], 1965) for number fields and
extended independently by Gopal Prasad ([52], 1977) and Gregory Margulis ([46], 1977)
to global fields.

4.4.6 Lemma.
Gr\G* /K™ =5 F*\ (A%)* / (0%)
is bijective.

Proof. For surjectivity, we observe that for eagke (A*)*,

det(a 1) =a.

Fix an arbitrarya € (A*)*. For injectivity, we have to show that eaghe G* with
detg = a represents the same clasq4s ) in G \ G* / K*. Since

o))

(“1)g~" € SL,A*. We putDy, = |vy(a)| for all y # x, and choosé&” to be the collection
of all elements’ € SL, A* such that for ally € | X|, we havek), = (! ;) (mod myDy Oy),
which is an open subgroup of SA*. For allk’ € K’, we havek = (¢~ | )k’(“ ;) € K*.

By the strong approximation property, there iy & SL, F N (K'(% ;)g™!) C GF.
Thus, we can find & € K’ such that

k1<a l)g—l =y.



68 Graphs of Hecke operators HEPTER4

o

In other words[g] = [(“ ;)] in GF\G*/K*. O

With k € K* as above this gives

4.4.7 Let x be a place of degre. Since det G* — (A*)* is a group homomorphism,
and F>*\ (A*)* /(@9*)* is a group, the bijection of the lemma defines a group structure
on Gr \ G* / K* which coincides with the quotient product structure inherited fi®@im
even though neitheg r \ G* nor G*/ K* is a group.

The quotient grougF >\ (A*)* / (0*)* is nothing else but the class group of thee-
gersOy, = ﬂ#x(@y N F) coprime tox. Thus we have isomorphisms of groups

Gr\G*/K* ~ F*\(A")*/(0*)* ~ ClO} ~ CI°FxZ/dZ.

Let S C G* be a set of representatives 16 \ G* / K*. Then Lemma 4.4.6 implies
that for everyg € Ga, which can be written ag = g*g, with ¢*¥ € G* andg, € Gy,
there ares € S, y € Gg andk € K* such thatg = yskg, such thatysk equalsg in
all components # x and g, = y~!g,. The condition[dets] = [detg*] as cosets in
Gr\G*/ K* implies thats is uniquely determined by*. Observe that

Ga/KZy = (G*/K*)x(Gx/K<Zx) = (G /K¥)xVert Ty,
and defind’y = Gr NsK*s~!. Then we obtain the following, also cf. [53, (2.1.3)].

4.4.8 Proposition. The decompositiog = ysk g, induces a bijective map

Gr\Ga/KZ, — []Ts\Vert;.
seS

[g] — (.[8xD
Its inverse is obtained by putting together the componests;* andg, € G,. O

4.4.9 Remark. On the right hand side of the bijection in Proposition 4.4.8, we have a
finite union of quotients of the forni’ \ Vert 7;. If s is the identity element, then

I' =T, = Goy. is an arithmetic group of the form that Serre considers in [60, 11.2.3]. For
generals, we are not aware of any results about\, Vert 7 in the literature.

4.4.10 So far, we have only divided out the action of the&componentZ,. of the centre.
We still have to consider the action &f*. If we restrict the determinant map to the
centre and write/ = {z € Zrp\ Z* / Zp~ | |detz| = 1}, then we have an exact sequence
of abelian groups

I > J > Zp\Z%/Zex -5 ClOL — ClOL/2CI0% — 0.

Let S be as in paragraph 4.4.7. The actionZof on S factors througl2 Cl@ and the
action ofZ* onT \ Vert 7, factors throughy for eachs € S. Ifwe let S’ € G* be a set of

representatives for €y, /2ClOy%, andh, = #(Cl F)[2] the cardinality of the-torsion,
then we obtain:
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4.4.11 Proposition. The decompositiop = ysk g, induces a bijective map

Gr\Ga/KZn —> [] JTs\ VertT;.

seS’

The inverse maps an elemdni[g.]) to the class of the adelic matrix with components
s € G* andg, € G,. The number of components®f equals

x x x hy  if degx is odd,

#(ClOF /2C10F) = #(ClOp)2] = { 2h, if degx is even.
Proof. Everything follows from Proposition 4.4.8 and paragraph 4.4.10 except for the two
equalities. Regarding the former, observe that both dividing out the squares and taking
2-torsion commutes with products, so by the structure theorem of finite abelian groups,
we can reduce the proof to groups of the fofypp™Z with p prime. If p # 2, then
every element is a square and there i2forsion, hence the equality holds. jf= 2,
thenzZ/p™Z modulo squares has one nontrivial class, and there is exactly one nontrivial
element inZ/p™Z that is2-torsion.

Regarding the latter equality, recall that(Z} ~ CI° F xZ/dZ,whered = degx. As
above,Z/dZ modulo squares has a nontrivial class if and only ifls even, and in this
case there is only one such classo

4.5 A vertex labelling

Let@a = (a?|a € A*) be the subgroup of squares. We look once more at the determinant
map

Vertg, = Gp\Ga/KZn <% F*\AX/0X@x ~ CIF/2CIF.
This map assigns to every vertexdh a label in CIF /2CI F. Leth, be as in Proposition
4.4.11. Observe that &l/2CI F has2h, elements, since the elements of even degree in
CI F are precisely the inverse image of@/2CI° F, whose order ig5.

4.5.1 Proposition. If the prime divisorx is a square in the divisor class group then all
vertices in the same component&fhave the same label, and there &, components,

each of which has a different label. Otherwise, the vertices of each component have one of
two labels that differ by in CI F /2CI F, and two adjacent vertices have different labels,

so each connected component is bipartite.

Proof. First of all, observe that each label is realised, since if we represent a label by some
idelea, then the vertex represented @/, ) has this label.

Let @, = (b* | b € F)) and CIFy = F* /0O, a group isomorphic t&. For the
Bruhat-Tits tre€7,, the determinant map

VertT, = Gx/KiZx -5 FX/0XQy~ ClFy/2CIF; ~ Z/2Z
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defines a labelling of the vertices, and the two classeBof O @, are represented by
1 andx,. Two adjacent vertices have the different labels sincesfarG, andé,, as in
Definition 4.4.1, ddig&,, ) = 7, detg represents a class different from gden Vert 7.

Define fora e A* a mapyxq : FX/O;Qx — F*\AX/OLQp by ¥ q([b]) =
[ab], whereb is viewed as the idele concentratedxin For everyh € G, we obtain a
commutative diagram

v,
Vert7y = Gy/KiZy —L>Gp\Ga/KZa Vert &,

e

CIF,/2CIF, ~ FX/O0XQ L F*\AX/0XQs ~ CIF/2CIF.

This means that vertices with equal labels map to vertices with equal labels.

Each component &, lies in the image of a suitabl, j, thus has at most two labels.
On the other hand, the two labels ©f map to vy gerr ([1]) = [a] and ¥y gerr ([7x]) =
[amy]. The divisor classes df:] and[ax,] differ by the class of the prime divisor,
and are equal if and only if is a square in the divisor class group. If so, according to
Proposition 4.4.11, there must B&, components so that tt#, labels are spread over
all components. If is not a square then by the local surjectivitydf , on edges two
adjacent vertices of,, also have different labels. o



CHAPTER 5

Geometry of Hecke operators

A global field of positive characteristic can be interpreted as the function field
of a curve over a finite field. This provides the theory of automorphic forms
over global function fields with a geometrical meaning. The domain of an
unramified automorphic form translates to isomorphism classes of projective
line bundles over the curve and the action of a Hecke operator can be described
by certain exact sequences of sheaves on the curve. This approach allows us to
apply methods from algebraic geometry, which lead to a complete description
of the graph of a Hecke operator up to a finite subgraph.

5.1 Geometric description of unramified Hecke operators

Let &, be as in Section 4.2. We will give a brief introduction to the geometric concepts

needed for a description &, .

5.1.1 For each global function field” with constants=,, there is, up to isomorphism,
precisely one geometrically irreducible smooth projective cufwererF, whose function
field is isomorphic taF. One can construct as follows.

The topological spac& P of X consists of all places of F and a generic poiny,
where the nontrivial closed sets are finite unions of places. Then we find K&ckhich
we defined in 1.1.2 as the set of closed pointskéP. Define the stalks of the structure
sheaf@x and their embedding into the generic stalk by

Oxx = OxNF — F =: Ox,.

Then for an open sdf C X'°P,

Ox(U) := () Oxx = [(OxNF) C F.

xeU xeU

Let wx be the canonical bundle and let
gx =dimg, I'(X,wx) = dimg, H'(X.Ox)

be the genus of the curve, which equals the genusf F as defined in paragraph 1.1.5.
We sometimes interchangé and X' in our notation, e.g. we write I for ClI F, hy
for hr, or Or x for Ox , etc.

71
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5.1.2 Remark. The usage of the lette9 for both the structure sheaf &f and its stalks

as well as for the rings of integers &f, F, andA may cause confusion if not read care-
fully, but different indices avoid ambiguity. There are various relationships between these
objects, e.g0 is the completion oy .

5.1.3 We shall consider vector bundles ahto be embedded in the category of sheaves
([28, Ex. 11.5.18]). We denote by BynX the set of isomorphism classesrahk» bundles
overX and by PicX thePicard group i.e. the isomorphism classesliofe bundlegogether
with the tensor product, which turns it into an abelian group. Eor£, € PicX, we use
the shorthand notatioff; £, for £; ® £,. There is a natural action

Bun, X xPicX — Bun,X.
(M, L) — ML

Let PBun, X be the orbit set BunX / PicX, which is nothing else but the set of iso-
morphism classes d#~!-bundles overX ([28, Ex. 11.7.10]). Accordingly we will call
elements oPBun, X projective space bundlesr in the case: = 2, projective line bun-
dles If we regard the total space of a projective line bundle as a scheme, then we obtain
nothing else but a ruled surface, cf. [28, Prop. V.2.2]. TRBsn, X may also be seen as
the set of isomorphism classes of ruled surfaces dver

If two vector bundlesmM; andM, are in the same orbit of the action of B¢ we write

My ~ M,

and say thatM; and M, areprojectively equivalentBy [M] € PBun, X, we mean the
class that is represented by the rankundleM.
Thedeterminanmap ([28, Ex. 11.6.11])

det: Bum, X —> Picx
M > (n-th exterior power ofM)

is multiplicative in exact sequences, i.e. if there is an exact sequence of vector bundles

0 M M M 0,

then detd = detM’ Q@ detM” .
Taking theassociated line bundle

CIF — PicX
[P] — £p

is an isomorphism of abelian groups ([28, Prop. 11.6.13]), which allows us to define the
degree of a vector bundley degM = degD when detM ~ £p. If ¥ is a torsion sheaf,
i.e. a coherent sheaf whose stalkyas zero ([28, Ex. 11.6.12]), then one defines its degree
by deg¥ =3¢ x| dime, (Fx).

The degree is additive in exact sequences of vector bundles, i.e. that for an exact se-
guence as above, ddg = degM’ + degM”. Additivity holds also if one replaces(” by
a torsion sheaf, see [28, Ex. 11.6.10-6.12].
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5.1.4 Remark. Note that if D = x is a prime divisor, the notation for the associated line
bundle&£, coincides with the notation for the stalk &fatx. In order to avoid confusion,
we will reserve the notatiotf,, strictly for the associated line bundle. In case we have
to consider the stalk of a line bundle, we will use a symbol different fibrior the line
bundle.

5.1.5 The bijection

FX\AX/0X = CIF <% PicX = BumX,
[a] — La

wheref, = £p if D is the divisor determined by, generalises to all vector bundles as
follows, cf. [20, Lemma 3.1] and [22, 2.1].
A rankn bundleM can be described by choosing bases

My —> O% = F" and My —> O% . = (Ox N F)"

for all stalks. This gives a diagram

for every closed point, where the matrix, € GL, F is determined by the constraint that

its inverse describes the unique linear map such that diagram commutes. By the nature of
a vector bundleg, € GL, Of x C GL, O for almost all places. In this way, .M defines
aclasqdg] =[(gx)] € GL, F\ GL, A/ GL, Op.

To see that this assignment is well-defined on isomorphism classes of vector bundles,
take a vector bundlé(’ that is isomorphicM and suppose that choices of bases for its
stalks defines an elemegit= (g’.) € GL, A. An isomorphismM’ — M induces isomor-
phisms of the stalks

M), —> My, and M. 5 M,

for all x. Altogether, this fits into a larger diagram for every

Ox O — F¢ Fe

J T ] ]

n ~ n ~
(9F,x P (9F,x( — F" F"

I

M, — s M, C My <= M, .

X

<[

<
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Here, again, the matricds, € GL, O x C GL, O andy € GL, F are uniquely deter-
mined by the constrains of commutativity. Thus we see thar! =k gy~ for all
x, or equivalently, if we puk = (kx) € GL,(Oa), thatg’ = ygk, and thudg’] = [g] as
classesin G, F\ GL, A/ GL,, Ox.

Since the inclusiorF C Fy is dense for every place, and GL, O, is open in Gl, A,
every class in GL F \ GL, A/ GL, Oa is represented by g = (gx) € GL, A such that
gx € GL, F for all placesx. This means that the above construction can be reversed. We
obtain:

5.1.6 Lemma. For everyn > 1, there is a bijection

GL, F\GL,A/GL,Oa <% Bun, X
(g] — Mg

such thatMg ® £, = Mg, for a € AX, anddegM, = degdetg). DO

5.1.7 Lemma. If Z, A denotes the centre &L, A, then there is a bijection
GL, F ZyA\ GL,A/GL,Oa <2 PBun, X

foreveryn > 1. O

5.1.8 The lastlemma identifies the set of verticeggfwith the geometric objedBun, X .
The next task is to describe edgeséfin geometric terms.
We say that two exact sequences of sheaves

0>F >F >F -0 and 0>F—>F > F, —0,

areisomorphic with fixed? if there are isomorphism®; — ¥, and¥] — ¥, such that

0 L 7 F| 0
0 % 7 ¥} 0

commutes.

Let X, be the torsion sheaf that is supportedvaind has stallc, atx, wherek,
is the residue field at. Fix a representativel of [M] € PBum, X. Then we define
My ([M],[M']) as the number of isomorphism classes of exact sequences

0 M M K 0,

with fixed M and with.M” representingM’]. This number is independent of the choice
of the representativé( because for another choice, which would be a vector bundle of the
form M ® £ for somef € PicX, we have the bijection

isomorphism classes isomorphism classes
O M >M—>K;,—0 — 0> M" > ML — Ky —0 3.
with fixed M with fixed M

O=>M > M— Ky —0) —> O>ML>MRIL —> Ky —0)
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5.1.9 Definition. Let x be a place. For a projective line bundi] € PBur, X we define
U ((M]) = {([M][M]m) | m=me((M][M]) #0}

and call the occurringM’] the ®-neighbours of M], andm . ([M], [M']) their multiplic-
ity.
5.1.10 We shall show that this concept of neighbours is the same as the one defined for

classes iNnGrZa\ Ga/ K in Definition 4.1.2. In Proposition 4.2.4, we determined the
®,-neighbours of a clagg] € Gr Za \ Ga / K to be of the formg&,,] for aw € P (k).

Fix a basigMy), 5 (9)2(,y for eachy € | X|. Note that by the definition df,, in paragraph
4.2.2, multiplying an element (1{9)2(’y with the componengé,, ), from the right yields an
element of(9)2(’y. Thus we obtain an exact sequencégfmodules

2 Ew
00— [l 0x,—> Il Ox,——>ki—>0 .
yElX| ye|X|

and by the correspondence explained in paragraph 5.1.5 an exact sequence of sheaves

0 Mggw Mg ch 0.

This mapsw € P! (k) to the isomorphism class ¢6 — Mg, — M, — Ky — 0) with
fixed M.

On the other hand, as we have chosen a basis for the stalkestch isomorphism
class of sequence® — M’ — M — K, — 0) with fixed M defines an element in
P(O% . / (mxOx,x)?) = P'(kx), which gives back.

We have proven the following.

5.1.11 Lemma. For everyx € | X|, the map

U([g)  — Ux((Me))
(gl.[g"l.m) +— ((Mq].[Mg].m)

is a well-defined bijection. o
Lemmas 5.1.6 and 5.1.11 imply:

5.1.12 Proposition. Letx € | X|. The graphg, of @, is described in geometric terms as:

Vertg, = PBun, X and

Edges, = [] U.(MD. O
[M]ePBum X

5.1.13 Remark. This interpretation shows that the graphs that we consider are a global
version of the graphs of Serre ([60, Chapter 11.2]). We are looking at all2anlndles on
X modulo the action of the Picard group &fwhile Serre considers rarikbundles that
trivialise outside a given place modulo line bundles that trivialise outside As already
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remarked in 4.4.9, we obtain a projection of the graph of Serre to the component of the
trivial classcy.

Serre describes his graphs as quotients of Bruhat-Tits trees by the action of the group
= G@; (cf. Remark 4.4.9) on both vertices and edges. This leads in general to multiple
edges between vertices in the quotient graph, see e.g. [60, 2.4.2c]. This does not happen
with graphs of Hecke operators: there is at most one edge with given origin and terminus.

Relative to the action of on Serre’s graphs, one can define the weight of an edge as
the order of the stabiliser of its origin in the stabiliser of the edge. The projection from
Serre’s graphs to graphs of Hecke operators identifies all the different edges between two
vertices, adding up their weights to obtain the weight of the image edge.

5.2 Geometric classification of vertices

Our aim is to show that the set of isomorphism classes of projective line bundleX over

can be separated into subspaces corresponding to certain quotients of the the divisor class
group of 7, the divisor class group &2 F and geometrically indecomposable projective

line bundles.

5.2.1 We denotehe dual vector bundlef M by M". For a line bundlet,
LY ~ Oy,

thus the dual line bundl" represents the multiplicative inver&s! ([28, Prop. 11.6.12]).
For two vector bundleg(; and.M, over X, theF,-vector space of sheaf morphisms

Hom(My, Mz) ~ T(X, M) ® M)

is finite-dimensional.
We call a vector bundled indecomposablé for every decomposition

M = M DM,

into two subbundled(; and.M,, one factor is trivial and the other is isomorphictt The
Krull-Schmidt theorentolds for the category of vector bundles ovéri.e. every vector
bundleM on X defined oveF, has, up to permutation of factors, a unique decomposition
into a direct sum of indecomposable subbundles, see [4, Thm. 2].

An extension of scalarg,; F// F, or geometricallyp : X' = X ® F,; — X, defines
the inverse image or thebnstant extensioof vector bundles

p*: Bunp, X — Bun,X'.
M — pPEM

The isomorphism classes of ramboundles that after extension of constantb jobecome
isomorphic top* M are classified by? ! (Gal(F i /F,). Aut(M ®F ), cf. [1, Section 1].
The algebraic group AWM ® F; ) is an open subvariety of the connected algebraic group
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EndM ® F,i), and thus it is itself a connected algebraic group. As a consequence of
Lang’s theorem ([36, Cor. to Thm. 1]), we ha#e' (Gal(F i /F,).Aut(M @ F,i))= 1.

We deduce thap* is injective. In particular, one can consider the constant extension
to the geometric curv& = X ® F, over an algebraic closuf, of F,. Then two vector
bundles are isomorphic if and only if they are geometrically isomorphic, i.e. that their
constant extensions  are isomorphic. We can therefore think of Bux as a subset of
Bun, X’ and Bunp, X. Although we will point out at many places that Rids mapped to
PicX’ via p*, we will consider CIX as a subgroup of OI” and omitp* from the notation.

On the other handp : X’ — X defines the direct image or the&ce of vector bundles

p«: Bun, X’ — Bun,; X,
M —> DM

and we have that faM € Bun, X
pxp*M ~ M
There is a natural action of GQ&l,; /F,) = Gal(F,: F/ F)
Gal(F,i /F4) xBun, X’ —  Bun, X’
(z , M) — MT
whereM* denotes the vector bundle with stalk&] = M,—1(). Then forM € Bun, X',

P paM = @ M.
reGaI(Fq,-/Fq)

The right hand side of the equation is a decompositioptfp..M) over X’. This
is a decomposition oveX only if the factors are defined ovéf. This shows that itM
is not defined oveX’, the notion of an indecomposable vector bundle is not stable under
constant extension. We call a vector bungé®metrically indecomposahifdts extension
to X is indecomposable. In [1, Thm. 1.8], it is shown that every indecomposable vector
bundle overX is the trace of an geometrically indecomposable bundle over some constant
extensionX’ of X.

There are certain compatibilities of constant extension and trace with tensor products.
Namely, for a vector bundlé( and a line bundl€é over X, we have

PrMRL) = p*MRp L,
and for a vector bundlg(’ over X',

M QL >~ pu(M Qp*L).
Thus p* induces a map denoted by the same symbol

p*: PBum X —> PBun, X',
[M] > [p*M]

and p,. induces
p«: Bun, X'/ p*PicX — PBun,; X.
[M] > [paM]
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5.2.2 We look at the situation for = 2 andi = 2. Leto be the nontrivial automorphism of
F,2/F4. The sePBun, X is the disjoint union of the set of classes of decomposable rank
2 bundles, i.e. ranR bundles that are isomorphic to the direct sum of two line bundles,
and the set of classes of indecomposable bundles. We denote these B&sngfif X

and PBunif®cx, respectively. LePBurd X c PBuny®cx be the subset of classes of
geometrically indecomposable bundles. Since the ragktise complemenPBung X =

PBuridecy — PBungi X consists of classes of traces of line bundles that are defined over
the quadratic extensioki’ = X ® F 2. Thus, we have a disjoint union

PBun, X = PBur®°x II PBurl X 1I PBund X .

One has to be aware of the fact that there are traces of line buffde®r X’ that
decompose ovek’; more preciselyp.£ decomposes if and only i € p*PicX, and
thenp,L ~ Ox & Ox.

For[D] € Cl X, define

cp = [£p ®Ox] € PBurex |
and for a[ D] € Cl X', define
tp = [p«LD] € PBUI"IIZrXU{Co}.

Note thaior acts on CX’ in a way compatible with the identification & ~ PicX’. Since
PEpx(L) 2 LD L >~ p*p.(£°) for £ € PicX’, and isomorphism classes of vector
bundles are stable under constant extensions, wetpaver, p.

We derive the following characterisationsRBurg®cX andPBuni X

5.2.3 Proposition.
ClX — PBunex
[D] +— (455}

is surjective with fibres of the forfiD], [ D]}.

Proof. Let M decompose inté&€; & £,. Then
M= L@L ~ (L10L)RL, ~ £1£,'90x,

thus surjectivity follows. Leff p- & Ox represent the same projective line bundlé&fasd
Oy, then there is a line bundlg, such that

£p®0x ~ (Lo ®0x) %o,

and thus eitheffy ~ Ox and€£p ~ £prorLy~ L£p andLp @ £p =~ Ox. Hence[D']
either equal§D] or [-D]. O

5.2.4 Proposition.
ClX'/ClX — PBunfX U{co}
[D] —> 15))

is surjective with fibres of the forfiD], [—D]}.
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Proof. Surjectivity is clear. Assume théD;],[D,] € CI X’ have the same image, then
there is af € PicX such that

Pl = puda® Lo,
where we briefly wrotéf; for £p;. Then inPBur, X', we see that

L1® L] ~ ppedy
~ p*peLa®p Lo
~ (£2®@p Lo) B (L5 Q@ p*&Lo),

thus eitherf; ~ £, ® p*&£y, which implies thatD; and D, represent the same class
inClX’/ClX, or £, ~ £J ® p*£o, which means thaD; represents the same class as
oD,. ButinClX’/ClX,

[O’Dz] = [0D2+D2 —Dz] = [—Dz]. ]
———
eClX

5.2.5 Lemma. The constant extension restricts to an injective map
p*: PBUNSX LI PBun X —— PBurjecx’.

Proof. Sincep* p.(£) ~ £ & £° for a line bundlef over X', it is clear that the image

is contained inPBund®cX’. The images oPBund®X and PBurf X are disjoint since
elements of the image of the latter set decompose into line bundlesYdubat are not
defined ovetX. If we denote taking the inverse elements by inv, then by Proposition 5.2.3,
p* is injective restricted t(PBungeCX becausd€Cl X /inv) — (Cl X’/inv) is. Regarding
PBurf; X, observe that

p*(ip) = p*p«(£Lp)
~ £p®Lop
~ L£p-op ®0Ox
= CD—oD »
where by Proposition 5.2.4) represents an eIementQﬁ‘,IX’/ CIX)/ inv, and by Propo-
sition 5.2.3,D — o D represents an element in £} inv. If there are[D,],[D;] € CI X’

suchtha{D; —oD) = £(D, —0D,), then we haveD, F D, = o (D F D,), and con-
sequentlyfD; F D,] e ClX. O

5.2.6 Remark. The constant extension also restricts to a map
p*: PBund X — PBurd X’.

But this restriction is in general not injective in contrast to the previous result. For a
counterexample to injectivity, consider Remark 7.1.7.
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5.3 Reduction theory for rank 2 bundles

This section introduces reduction theory for rank 2 bundles, i.e. the investigation of vector
bundles by looking at proper subbundles.

5.3.1 Vector bundles do not form a full subcategory of the category of sheaves, to wit, if
M7 andM, are vector bundles anél; — M» is a morphism of sheaves, then the cokernel
may have nontrivial torsion, which does not occur for a morphism of vector bundles. Thus
by aline subbundlet — M of a vector bundleM, we mean an injective morphism of
sheaves such that the cokerté) £ is again a vector bundle.

But every locally free subshed — M of rank 1 extends to a uniquely determined
line subbundlef — M, viz. £ is determined by the constraifft ¢ £ ([60, p. 100]). On
the other hand, every rarikbundle has a line subbundle ([28, Corollary V.2.7]).

Two line subbundlest — M and £’ — M are said to be the same if their image
coincides, or in other words, if there is an isomorphi€m- £’ that commutes with the
inclusions intaM.

For a line subbundl&€ — M of a rank2 bundleM, we define

8(L, M) := degf —degM /L) = 2degL —degM
and
(M) ;= sup S(L,M).
LM
line subbundle
If §(M) = 6(L£, M), then we call£ a line subbundle of maximal degreer briefly, a
maximal subbundleSinces (£ ® £', M @ £') = §(£, M) for a line bundlet’, §(M) is a

well-defined invariant of’Bun, X', and we pu([M]) = §(M).
Let gx be the genus ok. Then the Riemann-Roch theorem and Serre duality imply:

5.3.2 Proposition ([60, I1.2.2, Prop. 6 and 7]).For every rank2 bundleM,
—2gx <O6(M) <00
If £ - M is aline subbundle witf(£, M) > 2gx —2, thenM ~ L D M/ L.

5.3.3 Every extension of a line bundf¢’ by a line bundlet, i.e. every exact sequence of
the form
0 £ M £’ 0,

determines a rank bundleM € Bun, X. This defines for allt, £’ € PicX a map

Ext!(£,£') — Bum X ,

which maps the zero element @ £’. Remark that since decomposable bundles may
have line subbundles that differ from its given two factors, nontrivial elements can give
rise to decomposable bundles.

The unitsF; operate by multiplication on thié;-vector space

Ext'(£,£) ~ Hom(L, £ wy).
Serre
duality
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The multiplication of a morphisnt — £'wy by ana € F; is nothing else but multiplying
the stalk(£), by a~! and all stalks(£'wy ). at closed pointsc by a, which induces
automorphisms on botlf and £'wy, respectively. Thus, two elements of E, £')
that areF; -multiples of each other define the same buntfle= Bun, X. We get a well-
defined map

PExt!(£,£') — Bum X

where the projective spa®Ext! (£, £') is defined as the empty set when Bxt, £’) is
trivial. If we further project toPBurn, X, we can reformulate the above properties of the
invariant$ as follows.

5.3.4 Proposition. The map

]_[ PExt!(£,09x) — PBum X
—2gx <degf<2gx—2

meets every element IéBuriZ”dECX, and the fibre of anjiM] € PBum, X is of the form

{0—) £ —>M—>0x >0 B(L.M)=~28x }

and M*LB0Ox

Proof. We know that everyM] € PBun, X has a reduction

0 £ M £’ 0

with §(&£, M) > —2gx, where we may assume thét = Oy by replacingM with M &
(&)1, henceS(&£, M) = degs. If degt > 2gx —2, then.M decomposes, so BXtL, Ox)

is trivial andPExt! (£, Ox) is the empty set. This explains the form of the fibres and that
PBun®cX is contained in the image. O

5.3.5 Corollary. There are only finitely many isomorphism classes of indecomposable
projective line bundles.

Proof. Thisis clear since [I PExt'(£,0x) isafinite union of finite sets. o
—2gx <degf=<2gx—2

5.3.6 Lemma. If £ — M is a maximal subbundle, then for every line subburitile> M
that is different fromf — M,

(L M) <—=8(L£,M).

Equality holds if and only itM ~ £ & £/, i.e. M decomposes andl’ is a complement of
£in M.

Proof. Compare with [56, Lemma 3.1.1.]. Sin@ — M is different from&£ — M, there

is no inclusiont’ — £ that commutes with the inclusions in#d. Hence the composed
morphism¢&’ — M — M / £ must be injective, and deff < degM / £ = degM —deg¥.

This implies that (£’, M) = 2degt’ —degM < degM —2degf = —§(L, M). Equality
holds if and only if£" — M / £’ is an isomorphism, but its inverse then defines a section
M/ E~L > M O



82 Geometry of Hecke operators HBPTERS

5.3.7 Proposition.
(i) Arank2 bundleM has at most one line subbundfe— M such thats(£, M) > 1.
(i) If £ — M is aline subbundle withi(£, M) > 0, thend(M) = §(L£, M).
(i) If (M) = 0, we distinguish three cases.

(1) M has only one maximal line bundle: this happens if and only(ifs inde-
composable.

(2) M has exactly two maximal subbundiés — M and£, — M: this happens
ifandonly if £ £ £, and M ~ £, @ £,.

(3) M has exactly; + 1 maximal subbundles: this happens if and only if all max-
imal subbundles are of the same isomorphism ¢mnd M ~ £ d L.

(iv) 8(cp) = |degD].
(V) 8(M) is invariant under extension of constants faf] € PBung®cx.

Proof. Everything follows from preceding lemmas, except for the fact thap £ has
preciselyg + 1 maximal subbundles in part (iii3), which needs some explanation.

First observe that by tensoring with—!, we reduce the question to searching the
maximal subbundles @@y @ Ox. This bundle has canonical bases at every stalk, which
induce the canonical inclusiolt;, , — O , of the stalks at closed poinisinto the stalk
at the generic poing. This allows us to choose for any line subbunéle— Ox & Ox
a trivialisation with trivial coordinate changes. Thus for every open subset over which
¥ trivialises, we obtain the samiedimensionalF -subspace; C 03, = F?. On the

other hand, every-dimensional subspacg, C (9)2(’77 gives back the line subbundle by the
inclusion of stalks?, = #, N (9)2(’)6 — ¥,. We see that for every place deg, ¥ >

and only the lines i3 | = F? that are generated by an elemenEjhc F? define line
subbundlesf — Ox & Ox with deg, ¥ = 0 for every placex. But there arg; +1 =
#P1(F,) different such line subbundles. o

5.3.8 Proposition. Let p : X' = X ® F > — X and £ € PicX’, thené(p.£) is an even
non-positive integer. It equalsif and only if£ € p* PicX.

Proof. Over X', we havep* p.&£ ~ £ @ £, and dedf = deg¥?, thus by the previous
paragraph, a maximal subbundle @f£ has at most the same degreesisor, equiva-
lently, §(p«£) < 0. A maximal subbundle has the same degreé€atand only if it is
isomorphic to£ or £ which can only be the case whéhalready is defined ovek'.
Finally, by the very definition of(M) for rank2 bundlesM, it follows that

(M) = degM (mod2),
and de@p.£) = 2degf iseven. O

5.3.9 Remark. We see that fof.M] € PBur§ X, the invariant(.M) must get larger if we
extend constants t6,2, becausep™ (M) decomposes oveX’. This stays in contrast to
the result for classes iBurf X (Proposition 5.3.7 (v)).
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5.4 Geometric classification of edges

This section will define certain subgraphs&ffor a placex, namely, the cusp of a divisor
class moduloc, which is an infinite subgraph of a simple nature, and the nucleus, which is
a finite subgraph that depends heavily on the arithmeti€.dfinally, §, can be described

as the union of the nucleus with a finite number of cusps.

5.4.1 We use reduction theory to investigate sequences of the form
0 M M K 0,

which occur in the definition ol ([.M]). By paragraph 5.1.3, defd’ = degM — d,, when
dyx = dimg, k. is the degree of.

If £ —> M is aline subbundle, then we say that it liftst if there exists a morphism
£ — M’ such that the diagram

£

.

M —> M

commutes. In this cas€, — M’ is indeed a subbundle since otherwise it would extend
nontrivially to a subbundléf — M’ C M and would contradict the hypothesis tliats
a subbundle ofi(. By exactness of the above sequence, a line subbufdie M lifts to
M’ if and only if the image off in X is0.

Let §x C Ox be the kernel o9y — K. This is also a line bundle, sinck, is a
torsion sheaf. For every line bundfs we may think of£ 4, as a subsheaf &. In PicX,
the line bundlef, represents the inverse &f, ,the line bundle associated to the divisor
In particular, degfy = degf ;! = —d.

If £ — M does not lift to a subbundle oft’, we have thatt 4, ¢ £ — M lifts to a
subbundle ofM’:

IxL c L
M ———= M.

Note that every subbundl# — M’ is a locally free subsheaf g€ — M and thus
extends to a subbundi® — M. If thus £ — M is a maximal subbundle that lifts to
a subbundlef — M’, then£ — M’ is a maximal subbundle. If, howevef, — M is
a maximal subbundle that does not lift to a subbunfle> M’, then£ g, — M’ is a
subbundle, which is not necessarily maximal. These considerations imply that

S(M') < 2degs —degm’ 2degft — (degM —d,) = §(M)+d, and
S(M') > 2degd, ¥ —degM’ = 2degf —2d, — (degM —dy) = (M) —d .

Since$(M’) = degM’ = degM —d, (mod ?2), we derive:

54.2Lemma.lf 0—-> M - M— K, —0 isexact, then
S(M) € {S(M)—dx, S(M)—dx+2,...,8(M)+dx}. O
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5.4.3 Every line subbundlé¢ — M defines a linef /£ g in P' (M /(M ® gx)). By the
bijection of paragraph 5.1.10,

0> M > M—>Kx—>0 L> P! (M / (e/% ® gx)) >

with fixed M
O0>M—>M—> Ky —0) — M (M Fx)

isomorphism classes of BX}C'[

there is an unique

0 M M Ky 0,

up to isomorphism with fixed, such thatf — M lifts to £ — M’. We call this the
sequence associated fo— M relative tod,, or for short theassociated sequencand
[M'] theassociatedb,-neighbour It follows that§(M') > §(£, M) + dy.

We summarise this as follows.

5.4.4 Lemma. If £ — M is a maximal subbundle, then the associatgdneighbour{M’]
has§(M') = §(M) + d, and

Y om = #{ZeP M/ (ML) |t . o
(ML [M'],m)e U ([M])
S(M")=8(M)+dy
5.4.5 Definition. Let x be a place. Define the number

my = max2gy —2,0},

and let the divisoD represent a clag®d] € ClO5 = CI X /(x).
We define theusp€, (D) (of D in g,) as the full subgraph of, with vertices

Vert€, (D) = {cp

[D']=[D] (mod (x)), and degD’ > my },
and thenucleusn, (of g,) as the full subgraph of, with vertices
Vert N, = {[M] € PBum X |§(M) <mx +dx} .

5.4.6 Theorem. Letx be a place andiD] € Cl X be a divisor of non-negative degree. The
®,-neighboursy of cp with §(v) = degD + d, are given by the following list:
(co,cx,g+1) € Ux(cop),
(cp,cp+x.2) € Ux(cp) if [D] e (CI°X)[2]—{0},
(cp.cpix.1),(cp,c_pix,1) € Ux(cp) if [D]eCI®X —(CI°X)[2], and
(cp,cp+x,.1) € Ux(cp) Iif degD is positive.

For all ®,.-neighbours of cp not occurring in this list(v) < §(cp) + dx. If furthermore
degD > dy, then§(v) = degD —d,, and ifdegD > mx + d,, then

Ux(cp) = {(cp.cp—x.4x).(cD.CD+x, 1)} .
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Proof. By Lemma 5.4.4, th&,-neighbours of ¢p with §(v) = §(cp) + dx counted with
multiplicity correspond to the maximal subbundles of a rartundle M that represents
¢p- Sinces(M) = é(cp) > 0, the list of all d,.-neighbours of c¢p with §(v) = degD +
dy = §(cp) + d follows from the different cases in Proposition (5.3.7) (i) and (iii). Be
aware thatp = c_p by Proposition 5.2.3; hence it makes a difference whether obnot
is 2-torsion.

For the latter statements, writd = £p ® Ox and letM’ be a subsheaf oM with
cokernel X, such thats(M') < §(M) + d,. Then€p — M does not lift to.M’, but
£pJx — M is aline subbundle and

M [/Lpdx =~ (detM)(Lpdx)” ~ (detM)dx(£pdx)" ~ L£pdx(Lpdx)” =~ Ox.
If degD > d,, then
8(£pdx. M) = degtpdx—deg@xy = degD —d, > 0.

Proposition 5.3.7 (i) implies thadtp — M is the unique maximal subbundle #t’ and
thus§(M’) = (M) —d.

If 6(M) > myx + dy, then§(M') > my > 2gx —2, henceM’ decomposes and repre-
sentscp_,. Since the multiplicities of altb,-neighbours of a vertex sum up ég + 1,
this proves the last part of our assertionso

5.4.7 Applying the proposition to the vertices of the cu8p(D) determines all edges that

lie in the cusp. Ifmy < degD < my + dx, the cusp can be illustrated as in Figure 5.1.
Note that a cusp is an infinite graph. It has a regular pattern that repeats periodically. In
diagrams we draw the pattern and indicate its periodic continuation with dots.

1 qx 1 qx 1 qx 1

cD CD+x CD+2x CD+3x

Figure 5.1: A cusp

5.4.8 Remark. Note that the notatiomp for vertices inPBurgeCX coincides with the
notation for the vertices in the examples of section 4.3.

We summarise the theory so far in the following theorem that describes the general
structure ofg,.



Figure 5.2: General structure 6f
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5.4.9 Theorem. Let x be a place of degre€, and/y the class number, then:

(i) % hashyd, cusps and

e = MU [ €D,
[DleClO%

whereVert Ny NVert €, (D) = {cp} if D represent§D] andmy < degD <my +
dx. The union of the edges is disjoint.

(i) Ny is finite and has#(ClO% /2ClO3.) components. Each vertex #f, is at dis-
tance< (2gx + mx + dy)/d, from some cusp. The associated CW-complexes of
N, and g, are homotopy equivalent.

(i) If [D] € ClO%, thenVert€, (D) C PBund®cX . Furthermore

PBUNj®®X C {ve\Vertg, |s(v) >0},
PBUrg X C {veVert, | 8(v) <2¢—2} and
PBurt X C {v e Vert¥ | §(v) <0and evep.

Proof. The number of cusps is #0kK = #(CIX / (x)) = #CP X -#Z/dyZ) = hyds.

That the vertices of cusps are disjoint and only intersect in the given point with the nucleus,
is clear by definition. Regarding the edges, recall from paragraph 4.4.2 that if there is an
edge fronw to w in 9y, then there is also an edge framto v. But Theorem 5.4.6 implies

that each vertex of a cusp that does not lie in the nucleus only connects to a vertex of the
same cusp, hence every edgegfeither lies in a cusp or in the nucleus, and we have
proven (i).

The nucleus is finite sind@Bun?¥ecX is finite by Corollary 5.3.5 and the intersection
PBurgecX N Vert N, is finite by the definition of the nucleus and Proposition 5.2.3. Since
the cusps are contractible as CW-complex&s,and g, have the same homotopy type.
Therefore the number of components (Q#(Dj; /207%) by Proposition 4.4.11. By Lemma
5.4.4, every vertex has ad,-neighbourw with §(w) = §(v) + dx, thus the upper bound
for the distance of vertices in the nucleus to one of the cusps. This proves (ii).

The four statements of Part (iii) follow from the definition of a cusp, Proposition
5.3.7 (iv), Proposition 5.3.2 and Proposition 5.3.8, respectively.

5.4.10 (Remark on Figure 5.2)Defineh = hy, m = my andd = d,. Further let
Dy,....Dpq be representatives for O, with m <degD; <m+d fori =1...,hd.
The cusp,(D;), i = 1,...,hd, can be seen in Figure 5.2 as the regions in the dotted
squares that are open to the right. The nucl§yss contained in the dotted rectangle to
the left. Since we have no further information about the nucleus, we leave the area in the
rectangle open.

Theé-line on the bottom of the picture indicates the vai(e) for the vertices in the
graph that lie vertically abov&v). .

The dotted lines refer to the vertices, which are elements of éiBen) X, PBun} X,
or PBund®cX. These lines are drawn with reference to &Hne to reflect part (iii) of the
theorem.
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5.4.11 Example (The projective line).Let X be the projective line ovet,. Thengy =0,
hxy =1 andX has a closed point of degreel. This means that

PBungecX = {Cnx}nz0-

Since an indecomposable bundié must satisfy botté(M) > 0 and§(M) < —2 which

is impossible, all projective line bundles decompose. Theorem 5.4.6 together with the
fact that the weights around each vertex surg t5 1 in the graph ofd, determinesg,
completely, as illustrated in Figure 5.3, and we recover the result from Example 4.3.5.

qg+1 g 1 g 1 q 1

o Cx Cox C3x

Figure 5.3: The graph ob, for a degree one placeof a rational function field

We conclude this section with two useful lemmas. Recall thatdenotes the line
bundle associated to the divisor cldsfe Cl X .

5.4.12 Lemma. Consider an exact sequence

If £ — M is not a subbundle, them ~ ££, d &£'.

Proof. Becauset — M is not a subbundle, it extends to a subsh&af, — M, and
consequently we obtain a short exact sequence

0——=L£EL L M F 0

with some torsion shedf . But deg¥ = degM — (degf + degf, + degf’) = 0, thusF
is the zero sheaf, ani£, & £’ — M an isomorphism. O

5.4.13 Lemma.Let£ — M be a line subbundle and

0 M M Ky 0
the associated sequence. #t=M/L. f M~ LD L', thenM' ~ LB L' .
Proof. Note thatM’/£ ~ (detM) g LY ~ £'dx. The hypothesis can be illustrated by:

0 M L'y —=0

|1

Since the compositiolt’ ¢, — M — K, is zero,£'d, — M lifts to £’ — M’, and
the upper sequence also splitso

0

0.
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5.5 Automorphic forms on graphs

Since we know the structure f. for placesr in general, we are able to describe a strategy
to discover unramified automorphic forms as functions on ¥erby solving eigenvalue
equations ford,.. To have a notation that suits our translation of automorphic as functions
on graphs, we puf([g]) := f(g) for [g] € Vert§,.

5.5.1 Since all functions on Verg, are smoothK-finite andG g Za-invariant, only the
condition of moderate growth (paragraph 1.3.3) needs some consideration. It is easily seen
to be equivalent with the existence of constafitand N such that for every divisob of
positive degree, one ha&cp) < C¢g™V 99, This means that the growth behaviour on
cusps should be at most polynomialgi#fe? .

5.5.2 Example (Eigenfunctions on the projective line)We begin with calculating eigen-
functions in the easiest case. Letbe the projective line ovef, andx a place of degree
1. Note thathy = 1. Recall thatg, looks like:

qg+1 qg 1 qg 1 qg 1

o Cx Cox C3x

We investigate the spack(®., )X, i.e. we search for functions on Ve#}, that satisfy
the eigenvalue equatiob, (/) = A f. Evaluating this equation at the vertices yields

A flco) = Dx(f)(co) = (g+1) flex)
and fori > 1, Aflcix) = Px(f)(cix) = f(c(i+1)x) + Qf(c(i—l)x),

or equivalently that

flex) = 2@+ D)7 f(co)
and fori > 1, fcirnx) = A f(cix) —q fci-1)x)-

which determines all valueg(c;x) for i > 1if f(co) andA are given. Thusi(d,, 1)K
is 1-dimensional for any.. From Theorem 3.6.2 together with Lemmas 3.7.2 and 3.7.3,
we know that there is precisely one $gt y~!} such thatE (-, y) is an eigenfunction of
@, with eigenvaluel, soE( -, y) spansA(®,,A)X, and—up to a constant multiple—its
values at the vertices can be calculated by the equations we have just found.

Since these calculations hold for arbitraxy= C, we have proven that there are no
unramified cusp forms for the projective line.

5.5.3 Let X be any projective smooth irreducible curve o¥grand letx be a place of
degreed, . Choose a divisob with my < degD <my + d, and consider the cusp, (D):

1 qx 1 qx 1 qx 1

cD CD+x CD+2x CD+3x

Let f € A(P,, 1)K, then we obtain from evaluating the eigenvalue equadiQif = A f
for everyi > 1,

f(CD+(i+1)x) = A flep+ix) —¢q f(CD+(i—1)x) .
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Thus the restriction of to Vert€, (D) is determined by the eigenvalaeonce its values
atcp andcp4, are given, but there is no further restriction ¢tcp) and f (cp+x).

This consideration justifies that we only have to evaluate the eigenvalue equation at
vertices of the nucleus to determine the eigenfunctior,oflf f vanishes at two consec-
utive vertices of a cusp, then it vanishes at all vertices of the cusp. We concludé riixat
stricted to the vertices of a cusp has compact support if and o) = f(cp+x) =0.

5.5.4 We proceed Witr{‘f(cbx,k)K. We know from Theorem 3.6.2 together with Lem-
mas 3.7.2 and 3.7.3 that this spacé isi,-dimensional, and all nontrivial elements are
functions that have non-compact support. Even if we restrict the domain of these func-
tions to the vertices of the cusps, they sparhgd..-dimensional space since otherwise,
&(d,, 1)K would contain ad,-eigenfunctions that vanishes at all vertices on the cusps
and thus would be a cusp form, which contradicts the decomposition in Theorem 3.6.2.
Applying the results from paragraph 5.5.3, we see that the functioggdn,, 1)X
are determined by their values in thky d,. divisor classes of degreesy + 1,...,myx +
2d,. Evaluating the eigenvalue equation at all vertices of the nucleus definegdan
dimensional subspace of the functions on these divisor classes.
In paragraph 3.7.17, we defined a finite Sebf places such that for any € E,,
the span ofE (-, y) equals the intersection of al(®x, A, (x))X with x € S. Thus we
can determineZ (-, y) up to a constant multiple by evaluating the eigenvalue equations
d, f = Ax(y) f atall vertices of the nucleV, for all x € S if there are no nontrivial cusp
forms that have the same eigenvalugsy) for &, for all x € S.

5.5.5 Residues of Eisenstein series fit perfectly in the picture of the completed Eisenstein
part, but on the graph, they can be described in a particularly simple way: Theorem 2.4.2
states that ify = » | |£1/2 € B¢ with 2 = 1, then the residué ( - , y) is nothing else but
a constant multiple ob o det.

In Section 4.5 we defined a labelling of the vertices by taking the determinant

Vertg, = Gr\Ga/KZn -5 F*\AX/0XQ@s ~ CIF/2CIF .

Sincew? = 1, this character factors through £l/2CI F, andw o det is thus a function
that assigns to the vertices 6f. the valuest1 depending on their label. The residue
E(-,y) is ad,-eigenfunction with eigenvalug, + 1) if the values of adjacent vertices
have the same sign, and the eigenvalue(ig, + 1) if the values of adjacent vertices have
opposite signs.

5.5.6 The #k-eigenfunctions that are cusp forms are characterised as #ipseigen-
functions with compact support. More precisely, from paragraph 5.5.3, it follows that the
support of a cusp form is contained in the set of verticesg, with §(v) < my, afinite

set. In particular the space of unramified cusp fomgé is finite dimensional. By the
multiplicity one theorem (3.5.3)A{f has a basis affx-eigenfunctions, which are unique

up to constant multiple. SincaX is finite dimensional, there is a finite s&tc | X| such

that the Hecke operatoss, for x € S can distinguish these basis vectors.

5.5.7 We give a reformulation in terms of the matrix associate#,t@s defined in para-
graph 4.1.8. LetM, be the matrix associated tb,. This infinite dimensional matrix is
characterised by the property thlat f = M, f for every f € AKX, whereM, f is defined
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by identifying an unramified automorphic form with the infinite dimensional vector con-
sisting of its values at all vertices ®f.. An unramified automorphic fornf' is thus ad,-
eigenfunction with eigenvalug if and only if it lies in the kernel oM, (1) = M, —A-1.

Define the submatrixM_(1)),,./, where the row index ranges ovele Vert N, i.e.
over the vertice® with §(v) < myx + d,, and the column index ranges over alle V,
whereV C Vert g, is subset of vertices’ with §(v) < my + 2d,.

Let A denote the space of functions & ThenM (1) can be seen as the restriction
of M,(1) to A, where we delete all rows off, (1) that have entries outsidé. The
restriction mapAX — A induces a bijection of the kernel @, (1) with the kernel of
M. (1) because a function that satisfies the eigenvalue equatiomagadll determines a
unigue®, -eigenfunction on Verg,, see paragraph 5.5.3.

Since there aréy d, verticesv € g, with my + d, < §(v) < my + 2dx, the kernel of
M. (1) has at least dimensidry d, independent of the value af On the other hand, there
are only finitely many values for such that the kernel o¥f.(1) has a larger dimension.

We know from paragraph 5.5.4 thiat d,. linearly independent functions of the com-
pleted Eisenstein part lie in the kernel, which are characterised by the property that they
do not vanish on all verticeswith mx < §(v) < my + 2d,. This means that we can sort
out the cusp form by looking at the functions in the kernelf(A) that vanish on all
verticesv with my < §(v) < my + 2dx.

5.5.8 Remark. When we want to determine the cusp forms that#ge-eigenfunctions,

we look for the solutions of a system of linear equations with integer coefficients, which
contain the eigenvalues for Hecke operators as parameters. The cusp forms occur if these
eigenvalues satisfy certain algebraic relations, which occur as vanishing condition on de-
terminants of submatrices @f, (1) as considered in the previous paragraph. This means
that the eigenvalues are algebraic numbers. Moreover, the degree of the defining algebraic
relations is bounded by the number of vertieewith §(v) < myx, since only for these
vertices, the eigenvalue equation can contain a non-zero multiple of the eigenvalue.

5.5.9 Example (Derivatives of Eisenstein series)Ve will show in the example of the
projective lineX overF, and a placex of degreel how to determine the derivatives of
Eisenstein series (or residues) as functions on¥gkt {c;x }i>o-

Let y € Ep with y2 # 1, then we know from Theorem 3.6.2 that

O (ED(eiv, 1)) = Ax (0 ED(eix. 1) +Ingx 25 (0 E (e, 1)
for all i > 0. For better readability, puf = E(-.y), /' =ED (-, ), A = Ax(y) and
A~ =Ingx A3 (). Calculating®, (EM (c;y, x)) for everyi > 0 gives:
f(ex) = (@+D7H(A S (co) + A7 f(co))
and fori > 1, fllearnx) = A S (cix) = q f(ci—1x) + A7 f(cix).
Since we have already determingd= E( -, y) (up to a constant multiple), this system

of equations determineg’ = E(M)( -, y) up to a constant multiple.
Note that in casg? = 1, one obtains the same results, but the constants look different.

5.5.10 Remark. This strategy generalises to a way of determining all functionsfn
Thus we are able to determine the values of each unramified admissible automorphic form
by solving a finite system of linear equations.
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5.5.11 Example (An automorphic form that is not admissible).Let X be the projective
line andx a place of degreé. Define f € AX by f(co) = 1 and f(c;x) =0foralli > 1.

Then®, (1) is the function with®, (f)(co) = 0, ®x(f)(cx) = g + 1 and trivial on
all ¢;x with i > 2. One shows by induction om that the suppor®’ (/) is contained in
{Cix}i=0....n aNd that®? (/) (cnx) = ¢ + 1.

Thus the set of function8b” ( f)},>0 Spans an infinite dimensional spaceArt, and
we see thalf is not admissible.

Note that the space of unramified automorphic forms with compact support is invariant
under the action offx. The subspace of admissible functions is precis@ Therefore,
every unramified automorphic form with compact support that is nd? gareigenfunction
is not admissible.



CHAPTER 6

The theory of toroidal automorphic forms

In this chapter, the theories of the previous chapters combine into the main re-
sults of this thesis about the space of unramified toroidal automorphic forms.
The first step is to prove their finite dimensionality, which implies that they are
contained in the direct sum of the Eisenstein, residual and cuspidal part. This
chapter shows that the Eisenstein part admi¢ga— 1)hr + 1-dimensional
subspace of unramified toroidal automorphic forms and the residual part con-
tains no nontrivial toroidal automorphic form at all. A translation of a result
of Waldspurger from number fields to global function fields would clarify the
guestion of the existence of toroidal cusp forms. Finally, the question of unita-
rizability and the connection with the Riemann hypothesis are discussed.

6.1 Finite dimensionality

In this section, we will give a finite upper bound for the dimension of the sge€F) of
unramified toroidal automorphic forms of the quadratic constant field exteasiof >

over F. In particular, this shows that the spadé, of unramified toroidal automorphic
forms is finite dimensional.

6.1.1 Let p: X’ — X be the map of curves that corresponds to the field extersjdn. If
S is an unramified automorphic form aod = M, € Bur, X for g € Ga (Lemma 5.1.6),
then we writef ([M]) = f(g), where[M] € PBur, X is the class represented By.
Let T be a torus corresponding to the inclusion
Of : EX ~Autg(E) — Autp(E) — Gp

of the units of E' given by a basis of/ F that is contained iz, cf. paragraph 1.5.2.
Recall from paragraph 1.5.12 the definition

o= [ fegar.
TrZa\Ta
6.1.2 Theorem. If T is as above andr = vol(Tr Za \ Ta) / #(PicX’ / p*(PicX)), then
forall f e AK,
fr(e) = cr - Z S([p«L]) .

[£]ePicX’ / p*(PicX)

93



94 The theory of toroidal automorphic forms HBPTERG

Proof. To avoid confusion, we writd r = A. We introduce the following notation. For
anx € |X|thatis inertinE/F, we definelg  := Of,, wherey is the unique place that
lies overx. Foranx € | X| thatis splitinE/F, we definelg . := Og,,, ® Ok.y,, Where
y1 andy, are the two places that lie over Note that there is no place that ramifies. Let
O, denote the completion @ ¢ . ThenOg, is a free module of rank overOr, = Oy
for everyx € | X|.

The basis ot over F' that defined” is contained irF . Itis thus a basis o® g, over
Or, for everyx € | X|. This shows at once th& ;' (K) = Ox, and that the diagram

EX\A%/Ox, 1> picx’

i@g lp*
Gr\Ga, /K —1~Bun X

commutes, where the horizontal arrows are the bijections as described in paragraph 5.1.5.
The action ofAr on E*\A% /Ox  andGr \Ga, /K by scalar multiplication is

compatible with the action of P on PicX’ and Bun X by tensoring in the sence that all

maps in the above diagram become equivariant if we identifyxRigth F>\ A% /(9X ,

cf. Lemma 5.1.6. Taking orbits under these compatible actions yields the commutative

diagram

EXAF\A% /0% Ll Picx’ / p* Picx

l@E lp*
1:1

GFZAF\GAF/K PBUI’bX.

Since f is right K-invariant, we may take the quotient of the domain of integration
by Ta, N K = ©g(05,.) from the right and we obtain the assertion of the theorem for
some still undetermined value of The value ot is computed by plugging in a constant
functionfor f. O

6.1.3 Remark. We are fortunate to find a torus that has such a particularly simple de-
scription. If the basis elements @& over F have nontrivial valuation at some place—
which necessarily happens i is a quadratic extension different from the constant field
extension—, then the inverse image&f= [[, ¢ x| G(Ox) underA% < Ga, does not
equaldy,. .

It seems very unlikely to me that in the general cdsecorresponds to the image of
p« : PicX’/ p*PicX — PBun, X, but it is rather the image of a certain extension of the
Picard group that captures information about the valuation of the basis elements.

6.1.4 Write CIP' X for the set of divisor classes that are represented by prime divisors
and CF X for the semigroup they generate, viz. for all classes that are represented by
effective divisors. In particular, € X containg, the class of the zero divisor, and for all
other[D] € CI, degD > 0. Denote by Cf X the set of divisor classes of degréeand

by CZ¢ X the set of divisor classes of degree at lehstet gy be the genus ok .

6.1.5 Lemma.
Clzéexx ¢ cIfx
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Proof. Let C be a canonical divisor o, which is of degre@gx — 2. For a divisorD,
define/(D) = dimg, H°(X,¥%p). We haveglD] € CI¥T X if and only if /(D) > 0, cf. [28,
Section IV.1]. The Riemann-Roch theorem is

I(D)—I(D—-C) = degD +1—gx ,

cf. [28, Thm. IV.1.3].
If now [D] € CIZ8X X, then de@ > gx and the Riemann-Roch theorem implies that
[(D)>degD+1—gx >0. O

6.1.6 Let D be an effective divisor. Then it can be written in a unique way up to permu-
tation of terms as a sum of prime divisals= x; + ...+ x,. We setdp = o, --- Py, .
Recall from Lemma 1.4.15 thax is commutative, s@p is well-defined. Further we
briefly write §p for the graph§s,, x of ®p, andUp (v) for Us, k (v).

Let[D] € Cl X. Recall from paragraph 5.1.3 th&{, denotes the associated line bun-
dle and from paragraph 5.2.2 thas denotes the vertex that is representedthy® Oy .
Recall from Proposition 5.3.7 (iv) th&tcp) = degD, where$ is as defined in paragraph
5.3.1.

6.1.7 Lemma. Let D be an effective divisor of positive degree.
(i) Letv,v' € Vertgp. If v is a®p-neighbour ofv, then|§(v') —§(v)| < degD.

(i) Moreover,
(co.cp.g+1) € Up(co),

and for all other edgesgcy,v,A) € Up(cop), the inequalitys(v) < degD holds.

Proof. We do induction on the number of factors &p = ®,, --- ®,, with xq,....x,
being prime divisors. Put = x,,.

If n =1, then®dp = d,. Assertion (i) follows from Proposition 5.4.2 and assertion
(ii) follows from Theorem 5.4.6.

If n > 1, we can writedp = ®p, @, for the effective divisorD’ = x; +--- + x,,_1,
which is of positive degree ddgf = degD —degx. Assume that (i) and (ii) hold fob’.

We prove (i). Letv’ be a®p-neighbour ofv. By Proposition 4.1.7, there is @'’
that is ad®p/-neighbour ofv and a®.-neighbour ofv’, thus the inductive hypothesis and
Proposition 5.4.2 imply

18(0")=8(v)| = [8(")—8(")|+|8(v")—8(v)| < degD’+degx = degD .

We prove (ii). By the inductive hypothesis, there is precisely one édge’,m) in
Up(co) with §(v’) = degD’, namely,(co,cp’,g + 1). By Theorem 5.4.6, there is pre-
cisely one edgécp’,v,m’) in Ux(cpr) with §(v) —8(cp’) = degx, namely,(cp/,cp, 1).
Proposition 4.1.7 together with (i) implies (ii). O

6.1.8 Theorem. The dimension of the space of unramified toroidal automorphic forms is
finite, bounded by

dimsw(E)X < #(PBum X —{cp}pjecetx) .

whereE/ F is the constant field extension.
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Proof. First remark that given the inequality in the theorem, finite-dimensionality follows
since the right hand set is finite. Indeed, by Lemma 6.1.5,

PBun, X —{CD}[D]eueﬁX C {v e PBum X | §(v) < mX}

sincem, = max0,2gx —2} > gx — 1, and the latter set is finite.

We now proceed to the proof of the inequality. Lte A (E)X. We will show by
induction ond = degD that the value off at a vertexcp with [D] € CI*" X is uniquely
determined by the values of at the elements dPBum, X — {cp }[pjecieti x . This will
prove the theorem.

By Proposition 1.5.15 and Theorem 6.1.2, the conditionffao lie in Ay (E)X reads

> @(f)(p«k£]) = 0. forall®e .
[£]e(PicX’ / p* PicX)

If d =0, take® as the identity element ik . We know from Proposition 5.3.8 that
p«(PicX’/ p*PicX) = PBunf X U{co}, SO f(co) equals a linear combination of values
of f at verticesv in PBun§ X, which all satisfy§(v) < 0. Since the zero divisor class is
the only class in CIf X of degreed, we have proved the cage= 0.

Next, let D be an effective divisor of degreé> 0, and put® = &p. If visadp-
neighbour ofw, then§(v) andé(w) can differ at most by/ (Lemma 6.1.7 (i)). Therefore
all ®p-neighboursv of vertices inPBungX haved(v) < d. The vertexcp is the only
®p-neighboumn of ¢g with §(v) = d (Lemma 6.1.7 (ii)). Thus

0 = Z Op()p«LD) = (@+1flep) + Z A f()
£e(PicX’/ p*PicX) £e(PicX’ / p* PicX),
([p+£]v,A)€Up ([p+£L])
§(v)<d

determinesf(cp) as the linear combination of values ffat verticesy with 6(v) < d. By
the inductive hypothesisf(cp) is already determined by the values f6fat vertices that
are not contained ifcp }pjecefx. O

6.1.9 Theorem. The spaceAf, of unramified toroidal automorphic forms is admissible.

Proof. This follows from Theorem 6.1.8 by Theorem 3.6.30

Recall from Example 5.4.11 that for the function field of the projective line &yer
every projective line bundle is of the form, for some non-negative integer wherex
is a place of degree So Theorems 6.1.8 and 3.6.3 immediately imply:

6.1.10 Theorem.If X is the projective line oveF,, theny

tor

(E) =0. O

6.1.11 The finite dimensionality of the space of unramified toroidal automorphic forms
implies thatAX c AX = By Theorem 3.6.3, we obtain the following decomposition,

where&X = AK N € is the space of unramified toroidal automorphic forms in the Eisen-
stein part, REK. = AKX N R is the space of unramified toroidal automorphic forms in the

residual part andt§ = AK N A is the space of unramified toroidal cusp forms.

6.1.12 Corollary. A5 = 65 & RE @ A, .
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This allows us to investigate the Eisenstein part, the residual part and the cuspidal
separately in the follwing three sections.

6.1.13 Example (Finite dimensionality in a ramified case)Let X be the projective line
overF, andx a place of degreé. ConsiderK’ = {k € K | kx = (' ;) (modry)}, which

is the same subgroup as in Example 4.3.9. Recall this example, in particular the definitions
of ¢ andcy,, ,, for n > 0 andw € P! (k,), the definitions of the Hecke operatab4 and

@', , for a placey # x of degreel andy € Gg, as well as the illustrations of their graphs

in Figures 4.9 and 4.8, respectively.

Taking these results on trust, we can prove thaf is finite dimensional by the same
strategy that we used in the proof of Theorem 6.1.8, namely, we do an inductibricon
show that ford > 2, the value of anf e A{g; at a vertexv with §(v) = d is uniquely
determined by the values ¢f at the vertices’ with §(v') < d.

Letd = 2. In the present case, Theorem 6.1.2 yiefds;) = 0. If we apply @, , to

this equation, where denotes the identity matrix, then we get

Y fw) =0,
weP(ky)
if we apply @/, to it, we get
> f(chw) =0.
weP! (ky)
w#[0:1]

Substracting the latter from the former equation yiejg’, [0:1]) =0. fnowv is a

vertex withd(v) = 2, i.e.v = ¢}, ,, for somew € P!(k,), we choose & € G, such that

w = [0: 1]y and obtain by appl)’/ing)’y,y to f(C;,[o;l]) = 0 that

q f(co) + f(cr) =0

and thusf (c;, ,,) = 0.

If d > 2, thenv = ¢/, for somew € P'(k.). Applying (<I>’y,e)“"2 to the equation
f(chy ) = 0Yields

[Chew) + D m@) f) =0
§(v)<d

for certain numbers:(v). This completes the induction and we have thus shown.ifat
is finite-dimensional.

6.1.14 Remark. It is not difficult to generalise the inductive step to the case of an arbitrary
curveX and arbitraryK’ < K since the graphs of Hecke operators for unramified places,
i.e. for placesy such thatk, = Ky, have ‘cusps’ that behave as in the unramified case.
This can be seen, for example, in the illustrationbgf,, in Figure 4.8.

But the initial step causes problems: For Hecke operators relative to proper subgroups
K’ of K, typically, the class of the identity matrixis connected to several verticesvith
the same value fo8(v). It is not possible to show finite dimensionality by considering
only Hecke operators for unramified places; one also has to consider the more involved
Hecke operators for ramified places.

Nevertheless, we state:

6.1.15 Conjecture. The space of toroidal automorphic forms is admissible.
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6.2 Toroidal Eisenstein series

In this section, we investigate the intersection of the space of toroidal automorphic forms
with the Eisenstein part.

6.2.1 SinceAp, is admissible, Theorem 3.1.9 implies tl&ff = & N AL, is characterised
by its unramified element&X.. Theorem 3.6.3 implies th&X has a decomposition

8tIo(r = @ (gtor N E’;(X)K) ’

{x,x_‘}jctuo
x2# [F!

where only finitely many term&X N 5( )X are nontrivial a€,is admissible. Each of
these terms has a basis of the form

{EC.0.EDC 0, . E®V( ).

wheren is its complex dimension.

Thus it suffices to investigate Eisenstein series of the f6{m, y) and their derivatives
E®(. y) for unramified quasi-charactegsin order to determin&;).. We will, however,
state and prove theorems for general quasi-charagter& where no additional effort is

required.

6.2.2 Let E be a separable quadratic field extensiorFofConsider an anisotropic torus
T C G, whoseF-rational points are the image & under®g : E — Mat,(F). Recall
from paragraph 1.5.2 that this injectivélinear homomorphism is given by the choice of
a basis ofE' over F and that it extends t®f : Ay — Ga,. Let Ng/p : AL — A% be
the norm ofE over F extended to the ideles. We have that(@gf (1)) = Ng,r (¢) ([38,
Prop. VI1.5.6]).

Let hg denote the class number Bfand letg g be the cardinality of the constant field
of E. Consider thé g-linear projection

pr: MabAr — AZ.
g — (0,1)g

The kernel of pr is contained in the upper triangular matrices and does not contain any
nontrivial central matrix. Since the only maximal torus @fthat is contained in the
standard Borel subgroup is the diagonal torus, the intersection of the upper trian-
Qular matrices withTp is Za. Thus®g(Ag) N kerpr:iO} and theAFr-linear map
®E = pro®g : Ap — A is injective. We can considg®z as a collection of maps
®E x for x € | X|. For eachx € |X|, this map@E » IS an injective homomorphlsm of
2-dimensionalF,-vectorspaces and necessarily surjective. This showstpas an iso-
morphism ofA r-modules. "

In the natural topology as freer-modules® g is thus a isomorphism of locally com-
pact groups. Defingr : AZ — C ashg(qe — 1) (volOa,)~! times the characteristic
function of p|(®E((9AE)). SinceOg is a homeomorphisnyr and alsopr,; = ¢7(- g)
are Schwartz-Bruhat functions for glle Ga.
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The following observation of Hecke ([30, p. 201]) was translated by Zagier ([83, pp.
298-299)) into adelic language.

6.2.3 Theorem.Let T be an anisotropic torus corresponding to a separable field exten-
sion E/F. For everyp : A2 — C that is a Schwartz-Bruhat functiog,e Ga and y € g,
there exists a holomorphic functies (g, ¢, x,s) of s € C with the following properties:

(i) Forall s € Csuch thaty?| > #||*!,
Er(g,0.x.8) = er(g,¢,x,8) LE(xoNg/r,s+1/2).

(i) Foreveryg € Ga andy € E, there is a Schwartz-Bruhat functign: A2 — C such
that

er(g,¢.1.5) = x(detg)|detg|*T"/2

forall s € C. If y € By, thenp = ¢7 .1 satisfies the equation.

Proof. Though this result is known and the following computation is done at several places
in the literature (in chronological order: [83], [81], [12]), we will show a proof because of
the relevance for this thesis.

For everyp : A2 — C that is a Schwartz-Bruhat functiog,e Ga and y € &, both
Er(g,¢,x.s) andLg(yoNg/r,s + 1/2) are meromorphic functions afe C. Define
er(g,p, x,s) astheir quotient. This is a meromorphic function tfiat satisfies (i). Before
showing thatr (g, ¢, x,s) is holomorphic ins, we consider part (ii).

Part (ii) needs more care. Recall from paragraph 1.5.12 that we have made choices of
Haar measures that match with the following changes of integrals. Let-Re2 — Rey,
then Lemma 2.5.4 applies, and we obtain

Er(g.¢.1,5) = / Y eluzg) x(detzrg)) |detzg) [T/ dzdr .
TrZa\Ta Zp\Za ¥€F?>—{0}
SinceTr \Ta >~ (Tr Za\Ta) X (ZF \ Za), we can apply Fubini’s theorem (cf. paragraph
1.2.4) to derive
Er(g.9.7.5) = > elurg) x(detrg)) [detrg)|* "/ dr .

Tr\Ta ueF2-{0}

The mapO g identifiesA% with Ta .. TheAg-linear isomorphisn@)E identifiesA g with
A% and restricts to a bijection betwedi and F2 —{0}. Thus we can rewrite the integral
as

(et [detgt 2 [ 3 p@r ) xNe s 0) Ny 0 T dr
EX\AZ- uekE>

If we defineg, = <p(@E( . )g) : Ag — C and apply Fubini’s theorem again, we get

Er(g.¢,x.5) = x(detg) |detg|""/? [ e () xoNE/p (1) |15 dt .

X
AE
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Note thatp, : Ag — C is a Bruhat-Schwartz function gsis one. Thus the integral is the
Tate integralL g (¢g, x oNEg/F.5s +1/2).
Theorem 2.2.7 implies that there is a Schwartz-Bruhat funatiod g — C such that

Lg(, xoNg/p,s+1/2) = Lg(xoNg/r,s+1/2).

If we defineg :A% — C to be the Schwartz-Bruhat function such thiat= ¢., then
er(g,9, x,5) = r(detg) |detg|" /2. If y € B, theny oNg,r is an unramified character
of Ag and » .
¥ =¢r—1(OE(-)g) =¢roOf

yields the desireds as it adopts the role oy in Theorem 2.2.7. Hence (ii) holds by
meromorphic continuation.

Lety be arbitrary. By Theorem 2.2.Z,¢ (, yoNg,F,s +1/2) equals a holomorphic
multiple of Lg(xoNg,r,s +1/2) in s € C for any Schwartz-Bruhat functiogr = ¢,
thuser (g, ¢, x,s) is holomorphicins e C. O

For any Schwartz-Bruhat functian: A2 — C and anyg € Ga we have that the auto-
morphic formg.E( -, ¢, x) is an element ofP (y) (paragraph 2.3.22). By the definition of
E-toroidality, we obtain as an immediate consequence:

6.2.4 Corollary. Lety € E such thaty? # | |=! and lety : A2 — C be a Schwartz-Bruhat
function. LetE/ F be a quadratic separable field extension. TH#n , ¢, y) is E-toroidal
ifand only if Lg(x,1/2) = 0.

6.2.5 We establish the analogue of Hecke’s theorem for a split torusl’ I;el{(* " )} cG
be the diagonal torus. We again wridefor the adeles of'. Define the Schwartz-Bruhat
functiongr : A2 — C ashr(g—1)"!(vol@,)~! times the characteristic function 62,
which is the same ag as defined in paragraph 2.3.20. Rut, = o7 (- g), whichis again
a Schwartz-Bruhat function since multiplying wighfrom the right is an automorphism of
the locally compact group?,.

Recall from paragraph 2.3.20 that we defingd, (s) € P (x| |*) as

Jox(5)(g) = /(p((O, 1)zg) 1 (detzg)) |detzg)|* 1/ dz

Zp
for Res > 1/2—Rey. Pute = (1 ;) andwo = (, !).

6.2.6 Lemma. Let T be the diagonal torus. For every: A2 — C that is a Schwartz-
Bruhat function,g € Ga and y € E, there exists a holomorphic functiér (g, ¢, x,s) of
s € C with the following properties.

(i) Forall s e Csuchthaty®| > #| ¥,

(E(t8.9. X.5) = fo.x ($)(18) — fo.x(s)(wotg)) dt
TrZA\Ta

= er(g.0.109) (L(x.s+1/2))% .

In particular, the left hand side is well-defined and converges.



6.2 Toroidal Eisenstein series 101

(i) Foreveryg € Ga andy € &, there is a Schwartz-Bruhat functign: A2 — C such
that
er(g.9.x.5) = x(detg)|detg[**"/

forall s € C. If y € Ey, thenyp = ¢7 -1 satisfies the equation.

Proof. Let Res > 1/2 —Rey, and denote the left hand side of the equation in (i)/by
Recall from paragraph 1.5.12 that we have made choices of Haar measures that match
with the following changes of integrals. We choogewo, (! ;)} as a system of
representatives a8\ G r. By definition of E(tg, ¢, x,s),

E(18.9.1:9) = fpx ) 18) = fox()worg) = Y fox®)((}1)18)-

ceF>

ceF™*

Hence

f= [ % fexo((2 1))
TrZa\Ta <€F
Note that this is a well-defined expression since

fw,x(s)((é 1) (Ztl zt2)> = fw,x(s)((nl ztz) (cni;l 1)) = fw,x(s)((cni;‘ 1))

for (Z’1 th) € TrZa, so changing the representativetof Tr Za \ Ta only permutes
{(% 1)} .cpx- Substituting the definition of;, , (s), we find

7 = / > / o((c. 1)z1g) x(dexzrg)) |dewzrg)*+V/2 dz d
TrZa\Ta <F7Za

By writing ¢, for the Schwartz-Bruhat functiop( - g), applying Fubini’s theorem to

(TFZA\TA)XZA x>~ (TF\TA)XZF

s+1/2

(cf. paragraph 1.2.4) and observing that we have def'* C ker(y| | ) for a matrix

z e Zp,wefind

I= / ) /wg((zc,Z)t) x(detig)) |detig)"*"/? dzd .
T\ Ta CEF™ px

We now replace by cz~!, replace the sum by the integral over the discrete spacand

use
TP\Ta =~ (FX\AX)x(F*\AX).
4 = (II’IZ)

Thenl equals
x(detg) |d3tg|s+l/2/ / / /‘Pg(chﬂfz) x(tit) |0t"V? dade dry dts
F*X\AX FX\AX FX Fx

— y(detg) |detg|"*'/ / ( / 0o (t1.12) 1(01) 11T drl)x(zz) 112 i

A A
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Let U C A? be the compact domain a@f;. Then{r € A|({ri} xA)NU # @} is
compact. For every,, the functiont; — ¢ (t1,12) is locally constant orA x {f,} C
A x A endowed with the subspace topology. Consequepilyy; .z,) is a Schwartz-Bruhat
function for everyr, and the expression in brackets that we see in the last equation is
a Tate integral, which equals a multiple b{y,s + 1/2) (Theorem 2.2.7). Denote the
factor by, (12). For the same reasons as before, but with the roles afids, reversed,
we see thap, (¢1, - ) is @ Schwartz-Bruhat function for every. Hence the value of the
Tate integral is locally constant ia and vanishes at ath outside a compact set. Since
L(x,s+1/2) does not depend ap, the factorp, is locally constant and compact support.
Henceg, : A — C is a Schwartz-Bruhat function. Substituting the Tate integral in the last
equation bype (£2)L(x,s +1/2) yields

I = y(detg) |detg|"/* L(z.s +1/2) / Ge (12) x(detg) 12 *V/2 diy
AX

where we see again a Tate integral, which equals a multiplg pfs + 1/2).

We end up with the right hand side of the equation in (i§7f(g, ¢, x,s) is suitably
defined. In particular, the left hand side is a well-defined and converging expression, which
is meromorphic iz € C, ander (g, ¢, x,s) is meromorphic as the quotient of meromorphic
functions. Hence (i) holds.

By Theorem 2.2.7, there is a Schwartz-Bruhat funcilonA — C such that we have
LY. x.s +1/2) = L(x.s +1/2). If we defineg : A2 — C to be the Schwartz-Bruhat
function such thai, (11.1,) = ¥ (11) - ¥ (2). Thenér(g.¢. x.s) = x(detg) [detg|sT1/2,

If x € Eo, thenpy .1 satisfies the equality by Theorem 2.2.7. Hence (ii) holds by mero-
morphic continuation.

By Theorem 2.2.7L(y, x,s + 1/2) equals a holomorphic multiple df(y,s + 1/2)
in s € C for any Schwartz-Bruhat functiotr, thuser (g, ¢, x.s) is holomorphic ins € C
for an arbitrary Schwartz-Bruhat functign o

6.2.7 Recall from paragraph 2.3.9 that
EN(g.0.X.8) = fox()(g) + My(s) fo,x(s)(g)

and from Theorems 2.3.13 and 2.3.14 that there is a flat sefygms) and a function
c(x,s) such that

My(5) fox(5) = c(18) fpymt(=5) and E(-, fyx()) = c(t.8) E (-, fp1(=5))

By paragraph 2.3.22, there is a Schwartz-Bruhat fungiisnch that

f:,,,x—l(s) = fo.01(5) and E(-.¢.x ) = E("fw,x—‘(s))'

Recall from Theorem 2.2.2 that for eveyye E there is a holomorphic functio(y, s) of
s € C such that

L3, 1/24+s)=€e(x,s)L(x "1, 1/2—5).
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Let T C G be a split torus. Theffr is given as the image &g : E* — Gp, where
E = F & F. Recall from paragraph 1.5.12 that in this case, we defined

i) = [ (£ 5Un e+ fvn)

TrZa\Ta

for f € A, where

fur () = /fwwm /f%mww=mmn

NIANT Np\Na

Proposition 1.5.3 implies that there is/ae G such thatl = y~!Tyy, whereTy is
the diagonal torus. Recall the definition@f, for the diagonal torugy from paragraph
6.2.5. Definepr = ¢13,,,. Note that this definition does not dependjohecause the only
matrices that leavé, invariant by conjugation are andwy. But ¢z, (- woy) = @1, (- ¥)
by the definition ofpr, .

We now state the analogue of Theorem 6.2.3 for split tori, which is also the adelic
translation of a long-known formula ([83, eq. (30)]).

6.2.8 Theorem. Let T be a split torus. For every Schwartz-Bruhat functipnA? — C,
g € Gp and y € E, there exists a holomorphic functien (g, ¢, x,s) of s € C with the
following properties.

(i) Forall s € Csuch thaty?| |** # | |,
2
Er(g.9.1.5) = er(g.9.%.5) (L(x.s+1/2))".

(i) If y € B9, thener(e,or, x,s) =1forall s € C.

Proof. First, letT be the diagonal torus. Lete E, ands € C such thaty?| |** # | |*!.
We calculate:

2ET(g.9.1.5)

= / (2E(tg.0.x:8) — En(tg.9,%.5) — En7(tg, 9, 1.5)) dt
TrZa\Ta

= / <2E(tg,<p,)(,S) — Jox($)(1g) — My(s) fo,x(s)(tg)
TrZa\Ta — foy () (wotg) — My(s) fq;,x(s)(wolg)) dt

= [ ((EC0.29) = fox6)t9) = fo)arg)
TrZa\Ta
+c(x.8) (E(g.¢. x " =5) — fo—1(=5)(tg) — f@,x—l(—S)(wotg))) dt,
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where we applied the formulas of the previous paragraph and the functional equation, cf.
Theorem 2.3.14. By Lemma 6.2.6, we can split the last integral into two and obtain:

er (8,0, 18) (LGLs +1/2)° + c(rs) ér(g. ¢ x~ " —s) (L =s+1/2))°.

We apply the functional equation to(y~!,—s + 1/2), cf. Theorem 2.2.2, and obtain (i)
for the diagonal torus if we put

1 1 _ L
er(8:¢.1:8) = 5er(g.9.1:9) + 5 €(t:9) 2e(x.s) er(g.@.x " —s).

This definer (g, ¢, x,s) as holomorphic function of € C sincee(y, s) is non-vanishing
as a function at (Theorem 2.2.2).

If T is any split torus, definer(g,¢, x.s) = er,(vg.¢. x.s). By Proposition 1.5.3,
there is ay € Gr such thatl = yT,y~!, whereTy is the diagonal torus. Recall from
Remark 1.5.14 thafr (g) = fr,(yg). This reduces the case of the general split torus to
the case of the diagonal torus. Thus (i) holds.

Regarding (i), lety € £, ands € C be such thag? | |** # | |i1. Since we may replace
x by x| ), we assume that= 0 without loss of generality. Recall from paragraph 2.3.22
that E(- .90, x) = E(+, X). Putfy = fpo,x(0) € P () and fy—1 = fyo ,-1(0) € P(x 7).

By paragraph 2.3.9, we have

En(g.2) = fy(8)+ My(0) fy(g) and En(g.x™") = f—1(8)+ M,—1(0)f,-1(g) .

whereN is the unipotent radical of the standard Borel subgroup.

Observe that fofl” = y~!Tyy, we haveer (e, ¢r, 1.5) = ety (¥, 915,915 X-5). Asin
the proof of (i), we may restrict to the diagonal toflis= T, without loss of generality. We
follow the lines of the calculation in the proof of (i), where we make use of the functional
equation forE( -, y) (Theorem 2.3.14), the functional equation fo€y,1/2) (Theorem
2.2.2) and Lemma 6.2.6 (ii):

2Er(e.q) = / (2E(t.2) = En(t.7) — Eyr(t.))di
TrZa\Ta
- ((E(t,)() — fx®) = fr(won))
TrZa\Ta

+ 22 (E@x™) = fym1() = fym1(won) )dr
ere.or.1.0) (L(x.1/2))” + ere.or.x1.0) x2(c) (L(x71.1/2))?
(L(x.1/2))* + 2@ x~(0) (L(1.1/2))?
2(L(x,1/2))°.

By holomorphic continuation, we fingr (e, o, x,s) = 1foralls e C. O

For any Schwartz-Bruhat functian: A2 — C and anyg € Ga we have that the auto-
morphic formg.E( -, ¢, x) is an element of? (y) (paragraph 2.3.22). By the definition of
F & F-toroidality, we obtain as an immediate consequence:
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6.2.9 Corollary. Lety € 2, such thaty? # | |=! and lety : A2 — C be a Schwartz-Bruhat
function. TherE (-, ¢, y) is F & F-toroidal if and only if L(y,1/2) =

6.2.10 Let T C G be a maximal torus defined yg : E* — GFr. If E is a field, then
the reciprocity map (cf. paragraph 2.2.9) assigns to the nontrivial character @ Gal

a character oA, which we denote by 7 = yg. This character is of order two and its
kernel is precisely N,r(A%). By Lemma 2.2.10,

Lg(xoNg/r.s) = Lr(x.s) LF(xxr.s) .

If E=F & F, then defineyr = yg as the trivial character. Furthermore, for every
maximal torusl” of G, set

; d!
e (g.0.0) = Fer(g @15 _

6.2.11 Theorem.Let T be a maximal torus iltv andn a positive integer. For alg € Ga
and y € E¢ such thaty? # | |*!

n!
ER @0 = ) g er @e 0 LY01/2) LO G 1/2).
i+j+k=n ]
i,j,k>0

Proof. Observe that in both the case of an anisotropic torus and the case of a split torus, we
are taking integrals over functions with compact support, so the derivatives with respect to
s commute with the integrals. Everything follows at once from applying the Leibniz rule
to the formulas in Theorems 6.2.3 and 6.2.80

6.2.12 Let y € E, such thaty? # | |i1. We say thajy is a zero ofL( -, 1/2) of ordern if
L(x,s +1/2) vanishes of ordet ats = 0. By the previous theorem, we see thayifs a
zero of L( -, 1/2) of ordern, then all the function& (- , x),..., E®~V (-, y) are toroidal.

The functional equation fak-series (Theorem 2.2.2) implies that zeros come in pairs:
x is a zero of orden if and only if y~! is a zero of orden, and if y = y~!, theny is a
zero of even order (Lemma 2.5.6). We cgll !} apair of zeros of order if y is a zero
of ordern in casey # x~!, orif y is a zero of orde2n in casey = x -1

Recall from paragraph 3.6.1 the definition of the sp&(:x)K and its basis elements
ED(. . y), wherey € ¢ andi > 0is an integer. Becaus®(x)X = € (x~1)X and because
in casey = y~!, we definedZ (-, y) asE@) (-, y), we obtain that if y, y~'} is a pair
of zeros of orden, thenE (-, x),..., E®D (. y) are toroidal and span andimensional
H-module provided thag? # | |

We summarise this.

6.2.13 Corollary. Let y € E, such thaty? # | |£! andi > 0.

() LetE/F be aseparable quadratic algebra extension. TR&A( - , y) is E-toroidal
if and only if{y, y "'} isa zero ofL(-,1/2)L(- xg.1/2) thatis at least of order.

(i) f {x.x"}is apair of zeros of.( - ,1/2) of ordern, thenE(-, y),..., E®=D(- x)
are toroidal. O
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6.2.14 Theorem. The dimension of X

o 1S atleast(gr — 1) + 1, wheregr is the genus
and’ g the class number of .

Proof. Fix an idelea; € A* of degreel and letwy,...,wp, € E¢ be the characters that
are trivial on{a;). Assume tha; is the trivial character. Then for evepye E,, there is
auniquej €{1,...,hr}ands € C/(2xi/Ing)Z suchthayy = w; | |*, cf. Corollary 2.1.4.
Proposition 2.2.11 proves the existence of a finite abelian unramified extefsiéhof

orderh g such that
hF
[] Lr@is+1/2) = ¢ri(s+1/2).
i=1
In particular the zeros of both hand sides as functions afe in one-to-one correspon-
dence.
From Theorem 2.2.8, we know that this zeta function is of the form

Lr(q™*)
(1=g=5)(1—q')

for some polynomial ¢/ (T') € Z[T] of degre€g r- thathasno zerod&t = 1orT =g~ !.
This means that the sum over the orders of all pairs of zerdg of1/2) sums up t@g -,
and that we fingz ¢ linearly independent toroidal automorphic forms&ff. Note that
for a quasi-charactey = w; | |* with y? = | |ﬂ, we have thatr/ (s + 1/2) # 0 because
L(T)hasno zeroal = ¢° or T = ¢~ . Hence ify is a zero ofL(-,1/2), thenE( -, y)
is not a residuum.

Finally, we apply Hurwitz’ theorem ([28, Cor. 2.4]) to the unramified extengiohF
and obtain:

Cri(s) =

2¢grr—2 = hp(2gr —2) andthus gp = (gr —1)hrp+1. O

6.2.15 Conjecture. The dimension 08X equals(gr — 1)hr + 1.
6.2.16 Remark. The question whether the dimension&f;, can be larger than the lower
bound(gr — 1)k r + 1 depends on the question whether there is a charggten the divi-
sor class groug™> \ A* / OX such that for all maximal tofl" the L-functionsL (xo xr. s)
have a common zerg

Theorems 1.1 and 5.2 in [67] state that for every global function fielof character-
istic different from2, there is integenro such that for every > n the occurrence of such
a common zero is excluded for the constant field extensjpe: F,» F. This means that
for every quasicharactef, : A%, — C* that is trivial onF,, and for every € C, there is
a separable quadratic field extensiBp/ F,, such thatL(yoxr,s) # 0. (Note that in our
particular case all exceptional situations of [67, para. 5.1] can be easily excludeggince
is not symplectically self-dual andh#= 1.)

If the genus ofF is 1 and either its characteristic is different fravor 4 ¢ is differ-
ent fromgq + 1, then in Theorem 8.3.11 we will show by a different method that such a
common zero cannot occur.

One way to prove this result for all global function fields of arbitrary characteristic,
genus and class number is by proving a non-vanishing result for double Dirichlet series as
considered in [18] and [19].
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6.3 Toroidal residues of Eisenstein series

In this section, we will prove that residues of Eisenstein series are not toroidal (Theorem
6.3.8).

6.3.1 Let T C G be a maximal torus corresponding to the quadratic algebra extension
E/F. Let yr be the character o™ that we defined in paragraph 6.2.10. Theorems 6.2.3
and 6.2.8 defined for every Schwartz-Bruhat functfonA? — C, g € Ga andy € E a
holomorphic functiorer (g, ¢, x.s) of s € C such thatEr (g, ¢, x,s) equalser (g, ¢, x,s)
times a certairl.-function provided the Eisenstein series has no pole at

Our aim is to the investigate toroidal integrals of the residRies ¢, x) of E(g, ¢, x,5)
ats =0, wherey? = | |£!. Note that

Rr(g.9.%) = (Res=0E(g.¢.%.9)); = Res=oEr(g.¢,%.5)
since we integrate functions with compact suppoffinZa \ Ta.
6.3.2 Lemma. Let T be an anisotropic torus ang = | [£'/2 € E with 2 = 1. For
every Schwartz-Bruhat functian: A2 — C andg € Ga,
Rr(g.9.0) = er(g.¢.x.0) Res=o Le(xoNg/r.s+1/2).

Proof. With help of Theorem 6.2.3, we calculate
Rr(g.¢.0) = lim s E7(g.¢.X.5)
=1im ser(g.¢.x.5) LE(XoNEg/F.s +1/2)
=er(g.¢,x,0) Rés=o Lg(xoNg/r,s+1/2). O

6.3.3 Let T C G be amaximal torus angl= o | | /2 € E with w? = 1. Letp : A2 > C
a Schwartz-Bruhat function. By Theorem 2.4R -, ¢, ) is a multiple ofw o det. In
particular,R(g,¢, x) = 0foranyg € Gp ifand only if R(e, ¢, y) = 0.

6.3.4 Lemma. Let T be an anisotropic torus ang = w | |¥/2 € & with w? = 1. There

is a Schwartz-Bruhat functiop such thatRz (e, ¢, ) # 0ifand only ifo =1 orw = yr.
Proof. Observe that the residuum of
Leg(xoNg/r,s+1/2) = Lr(w,s+1/2£1/2) Lr(wxr.s +1/2+1/2)

ats = 0 is nontrivial if and only if one of the two factors is the zeta functionFgfand this
happens it = 1 orw = x7!' = xr.

If Res—o LE(xoNg,r,s +1/2) =0, thenRr(e, ¢, x) = 0 for all Schwartz-Bruhat
functionsg by Lemma 6.3.2.

If not, thenR(e,¢7,x) =1-Res—o Le(xoNg,r.s+1/2) (Theorem 6.2.3 (ii)) does
not vanish. o

6.3.5 Lemma. Let T be an anisotropic torus ang = w| |£1/2 € E with w? = 1. If
Rr(e,, y) = 0 for all Schwartz-Bruhat functiong, then there exists a Schwartz-Bruhat
functiong such thatR(Tl)(e,g),X) # 0.



108 The theory of toroidal automorphic forms HBPTERG

Proof. By Lemma 6.3.4, we have th&z (g, ¢, y) = 0 for all ¢ andg € G4 if and only if
Lg(woNg,F, -) has no pole ab or 1. With the help of Theorem 6.2.3, we calculate

. d
R(Tl)(e,rpr,x) = Slino T Er(e,or, %,5)

s—0

. d
=lm - ser(e.or.x.5) Le(xoNg/r.s+1/2)
=S|i_ﬂ>10 (eT(e,‘PTaXvS)LE(XONE/F,S+1/2)

d
+ s 7 er(e,or, x.8) LE(xoNEg/F.s + 1/2))

=er(e,or.x,0) LE(woNg/F, 1/2+1/2),

which does not vanish by Theorem 6.2.3 (ii) and Corollary 2.2.12.

6.3.6 Let T be a split torus angt = w | |¥/? € E with @2 = 1. Let N be the unipotent
radical of a Borel subgroup C G. Then

(wodebhpy(g) = / wodetng)dn = wodefg).
NF\Na

Consequently
Rr(e,p.x) =0

for every Schwartz-Bruhat functiop by the definition of the toroidal integral for a split
torus.
We summarise:

6.3.7 Theorem. Let E be a quadratic separable algebra extensiorFgfy g the character
from paragraph 6.2.10 angl = » | |*1/2 € E withw? = 1.
() If wistrivial, thenR(-, y) € Awr(E)ifandonlyifE ~ F&@ F.
(i) If wis nontrivial, thenR( -, y) € Aw(E) if and only ifw # yk.
(iii) If E is afield ands > 1, thenR™ (-, ) ¢ Awr(E). O

6.3.8 Theorem. Ryor = {0}. O

6.4 Remarks on toroidal cusp forms

6.4.1 Remark. Waldspurger calculated toroidal integrals of cusp forms over number fields.
So assume for a moment thatis a number fieldsr an irreducible unramified cuspidal
representation and € = an unramified cusp form. Let(x,s) be theL-function of z.

Let T C G be an torus corresponding to a quadratic field extengiaf F and yr the
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character corresponding f by class field theory. Then the square of the absolute value
of
f@)dt
TrZa\Ta
equals a harmless factor timéss, 1/2)L(zyr,1/2), cf. [71, Prop. 7].

These integrals are nowadays called Waldspurger periods ahd it is translated in
some cases to global function fields, cf. [44]. This leads to the conjecture:

6.4.2 Conjecture. A cusp formf of an irreducible unramified cuspidal subrepresentation
7 of the space of automorphic forms is toroidal if and only.{#r, 1/2) = 0.

By the multiplicity one theorem (3.5.3), this conjecture implies

6.4.3 Conjecture. The dimension oj%({fmr equals the number of isomorphism classes of
irreducible unramified cuspidal representatiomswith L (7, 1/2) = 0.

6.4.4 Remark. In Theorem 8.3.1, we will prove by a different method theff,, = {0} if
gr =1.

6.5 Some history around the Riemann hypothesis

Ich setzte nun = % +ti und
0(3)6-Dr 26 = €0, [.)

Die Anzahl der Wurzeln voi(¢) = 0, deren reeller Theil zwischemund T liegt, ist
etwa

T 2w 2w 2w .
denn das Integrgf dlogé (¢) positiv um den Inbegriff der Werthe varerstreckt, deren
imaginarer Theil zwischeéi und —%i und deren reeller Theil zwischénund T liegt,

ist (bis auf einen Bruchtheil von der Ordnung der Gré%s)egleich (Tlog% — T)i;

dieses Integral aber ist gleich der Anzahl der in diesem Gebiet liegenden Wurzeln von
&(t) = 0, multiplicirt mit 2ri. Man findet nun in der That etwa so viel reelle Wurzeln
innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell sind.
Hiervon ware allerdings ein strenger Beweis zu wiinscher;

Bernard Riemann, [54]

Though the function

1
() =Yy — for Res > 1
n=1
was studied by Leonard Euler for real values déng before the cited article by Bernard
Riemann from 1859 ([54]) was written, it was this article that gage the name ‘Rie-
mann zeta function’ and that gave the conjecture that the zerpg phre real the name
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‘Riemann hypothesis’. This hypothesis is equivalent with the more common formulation
that the nontrivial zeros df(s), i.e. the zeros of (s) that are not negative even integers,
have real part /2. The proof that Riemann asks for is still an open problem today.

In his article, Riemann was concerned with the approximation of the number of primes
(x) up to a givenxy € R by the logarithmic integral function

T
Ll(X) = [m—tdl,
0

a connection that was first observed by Gaul3. It states that—though the occurrence of a
prime number, which corresponds to a jumprifx), seems unpredictable—the value of
7(x) is of a comparable size to (). Riemann writes in the same article [54]:

Die bekannte Naherungsformglx) = Li(x) ist also nur bis auf Gréssen von der Ord-
nungx% richtig [...].

The precise relation between this approximation and the Riemann hypothesis was
given by Helge von Koch in 1901 ([68]), namely, that the Riemann hypothesis is equivalent
to the statement that )—LiGx)

. m(x)—LI(x
A iae
is bounded for every > 0. (See Don Zagier's inaugural lecture in Bonn [82] for a more
comprehensive overview over these connections).

In his doctoral thesis from 1924 ([2], [3]), Emil Artin defined a zeta function for the
function field of an elliptic or a hyperelliptic curve over a finite field. He calculated the
zeta functions for about 40 function fields and found out that in these cases the analogue
of the Riemann hypothesis holds true, i.e. that all zeros have real f2art

Whereas Artin’s zeta function was the strict analogue of the Riemann zeta function,
Friedrich Karl Schmidt introduced in 1929 ([57]) a more intrinsic definition of a zeta
function that included an additional factor for the place at infinity, which was singled out
in Artin’s definition. Since this factor is invertible, it does not change the validity of the
Riemann hypothesis. Schmidt further extended the definition to all global function fields
F, and it is this kind of zeta function that we denotedpyin the present thesis.

Helmut Hasse proved in 1933 ([29]) that for the function field of an elliptic curve over
a finite field, the Riemann hypothesis holds true, and André Weil proved in 1948 ([76])
the Riemann hypothesis for the function fields of an arbitrary curve over a finite field by
methods from algebraic geometry, which he developed for this purpose over a period of
several years. We refer to this result as the Hasse-Weil theorem, cf. Theorem 6.7.1.

Weil defined in 1949 ([77]) a zeta function for more general varieties over finite fields
and stated his famous conjectures, which included the Riemann hypothesis for this class
of zeta functions. Many mathematicians like Dwork and Grothendieck worked on these
conjectures and could solve parts of them, but it was not before 1973 that Pierre Deligne
succeeded in proving the Riemann hypothesis for projective nonsingular varieties over
finite fields ([16]). However, it is still unclear if the known methods generalise from global
function fields to number fields.
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Meanwhile, there are alternative proofs of the Hasse-Weil theorem that use less al-
gebraic geometry, e.g. the proof by Yuri Manin in special cases in 1956 ([45]), by Ser-
guei Stepanov in 1969 ([63]) and by Wolfgang Schmidt in 1973 ([58]). Finally, Enrico
Bombieri simplified this proof in 1974 ([7]). But it also failed to be translate@tget.

There are further approaches by formulating conditions that imply the Riemann hy-
pothesis foiIQ. To name a few, there is Weil’s criterion from 1952 ([78]) or Li’s criterion
from 1997 ([42]). In 1999, Alain Connes ([13]) showed that a certain trace formula is
equivalent to the Riemann hypothesis.

At the Bombay Colloquium in January 1979, Don Zagier ([83]) observed that if the
kernel of certain operators on automorphic forms turns out to give a unitarizable represen-
tation, formulas of Hecke imply the Riemann hypothesis. Zagier called elements of this
kernel toroidal automorphic forms.

In the following section, we elaborate the analogue of Zagier’s idea for global function
fields, namely, the implications of unitarizability of the space of toroidal automorphic
forms for the Hasse-Weil theorem. In the last section, we show the impact of the Hasse-
Weil theorem on the unitarizability of the space of toroidal automorphic forms.

6.6 From unitarizability to the Riemann hypothesis

This section translates the observation of Don Zagier ([83, pp. 295-296]) that unitariz-
ability of the space of toroidal automorphic forms implies the Riemann hypothesis to the
setting of global function fields. Recall the definition of the restricted tensor product of
representations and of the principal series representaffp(s, ) from paragraph 3.1.5.

6.6.1 Definition. An irreducible subrepresentatidn C ALy is calledunitarizableif for

all x € | X|, there is an unramified quasi-charactgr: Fx — C* such that

Ve Q) Palrn)

x€|X|

as Ga-representation and for all € | X|, the quasi-character, either is a character or
equals| |5~ for sy € (—1/2,1/2) or (sx —mi/Ing) € (=1/2,1/2).

A unitarizable representation is calledempered representatigfifor all x € | X|, the
quasi-charactey, is a character. Otherwise it is called@amplementary series represen-
tation.

An unramified representation is called a unitarizable/tempered/complementary series
representation if it decomposes into a direct sum of irreducible unitarizable / tempered/
complementary series representations.

6.6.2 Remark. Let V' C AJj,,, be an irreducible subspace. ThEns unitarizable if and
only if there is aGa-invariant Hermitian product ofY. Bearing in mind that the defini-

tion of unitarizability is of local nature, i.e. it refers to properties of certain representa-
tions P, (xx) of G, for everyx € | X|, and that every irreducible representationsGgf

is isomorphic to some principal series if nietlimensional (Theorem 3.1.8), the assertion
follows from [11, Thm. 4.6.7]. The consequence that the Hilbert space completion of a

unitarizable invariant” C 4Ly is a unitary representation 6fa explains the naming.
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6.6.3 Lemma. Let y € Ey, then the following are equivalent.

(i) 2 () is atempered representation.

(i) Rey = 0.
(i) Ax(x) € [-292/%,2¢Y?] for all x € | X].
(V) Ax(x) € [-2¢/%,2¢1/?] for somex € |X]|.

Proof. Recall from paragraph 3.1.5 that

P~ Q' Pr)

x€|X|

with yx = x|r,, which all are characters if and onlyifis a character. This is the case if
im y C S, or equivalently if Rgg = 0. Thus the equivalence of (i) and (ii).

Assume (ji). Thenimy C S, and (x) = g2/ (™" (x) + x(rx)) for everyx € | X|.
But y~!(m,) is the complex conjugate of(ry), thereforey=!(my) + x(mx) € [-2,2].
Thus (iii). The implication from (iii) to (iv) is trivial.

Conversely,y = (mry) + x(mx) € [-2.2] only if y~!(x,) is the complex conjugate of
x(my), thus y(my) € S!. But by Lemma 3.7.2, é/ (x(ry)) contains only multiples of
x by characters, and since this fibre contains a character of the|fdrfar some purely
imaginarys, y itself must be a character. Thus (iv) implies (ii).c

6.6.4 Lemma. Let y € Ey, then the following are equivalent.

(i) P (x) is unitarizable.
(i) Rey =0o0r y =w||® for somew € Ey with > = 1 and somes € C such that
se(=1/2,1/2)or (s—xi/lng) € (—1/2, 1/2).
(i) Ax(x) € (—=(gx+1). g« + 1) forall x € |X|.
(iv) There exists a subsstc | X| that generate€l F such that for allx € S,
Ax(x) € (—=(gx +1), gx +1).

Proof. Assume (i) and choose a placeNote that as / O ~ Z, y, is of the form| |~

for somes, € C, and thusi,(y) = qi/z(qff +¢x ™). If the restrictiony, of y to FX isa

character, theft . (x) = x> (X3 (mx) + xx (7x)) € [-294, 242'?]. If not, observe that
sx € (172, 1/2) ifandonlyif (g5 +¢5*) € [2. ¢¥'* +45"/*) and

(sx —7i/Ing) € (=172, 1/2) ifandonlyif (¢3* +q3*%) € (—qi/*—¢5 "2, -2].

This proves (i) from (i). The implication (iii) to (iv) is clear.

Assume (iv). If for onex € | X |, we havel,(y) € [-2¢/2, 2¢41/?], then Lemma 6.6.3
implies that Rey = 0. If not, thens, € (—1/2, 1/2) or (sx —xi/Ing) € (—1/2, 1/2). By
Lemma 3.7.2, all quasi-character'swith y’'(wx) = y(x) are of the formy’ = wy with a
charactem that satisfieso(r,) = 1. In particular,| |** is of this form, and to have for all
x € |X| thato(ry) x| € (—(gx + 1), —2¢?)U (2¢Y2, g« + 1), it must hold true that
w(my) = 1, and thusp? = 1. Hence (ii).

Statement (i) follows from (ii) by the definition of a unitarizable representationn.
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6.6.5 Theorem (Zagier). If every irreducible subrepresentation 4f), is a tempered rep-
resentation, then all zeros §f have real partl /2. If furthermore AQ, is itself a tempered
representation, thefir has only simple zeros.

Proof. By Theorem 6.2.11, we know that every zer(2 + s of ordern of {r yields
that E(-.|[*).....E@~D(. | |°) are toroidal. OnlyE(-,||*) generates an irreducible
representation. If this representation is tempered, then the real pais 6fby Lemma
6.6.3.

If furthermoreA(, is the direct sum of irreducible tempered subrepresentations, then
no derivative of an Eisenstein series can occur and the zefgsmist be of ordet. O

By Lemma 6.6.3, we obtain:

6.6.6 Corollary. If there is a placex such that the eigenvalue of eveby.-eigenfunction

in AX lies in the interval—2¢./2,241/?], then all zeros ot have real partl /2. O
tor

6.6.7 Remark. We will see in Chapter 8 that the developed methods are strong enough to
prove that the space of unramified toroidal automorphic forms for global function fields of
genusl contains only unitarizable subquotients, without using the Hasse-Weil theorem or
the Ramanujan-Petersson conjecture.

A proof of unitarizability for the unramified toroidal automorphic forms o@ewould
imply that the zeros of the Riemann zeta functiogither lie in the interval0, 1) or have
real partl /2. Since we know that has no zero in0, 1), cf. [66, Formula (2.12.4)], the
Riemann hypothesis f@ indeed follows from unitarizability ([83, pp. 295—-296]).

This result, however, is peculiar @: The zeta functiodr of the function fieldF of
the elliptic curve oveF, that is defined by the Weierstrass equatloh+ Y = X3 +«,
wherex is an element ifr4 — F5, has a zero of ordérat 1/2.

Note that unitarizability implies in particular that no derivatives of Eisenstein series
occur, so this further implies the simplicity of the zerog gt It seems indeed likely that
the Riemann zeta functionhas simple zeros. For an overview over the research related
to this question, see [50, §2]. The above example shows that simplicity of the zeros is also
not a general phenomenon.

The milder assumption of that every irreducible subquotient of the space of unramified
toroidal automorphic forms is unitarizable still implies the Riemann hypothes{3,fout
it allows multiple zeros of.

6.7 From the Riemann hypothesis to unitarizability

The implication of Theorem 6.6.5 is of hypothetical nature as the Riemann hypothesis is
proven for global function fields (Theorem 6.7.1). We can, however, make use of the Rie-
mann hypothesis to prove the hypothesis of Theorem 6.6.5. This proof uses admissibility
(Theorem 6.1.9) and the Ramanujan-Petersson conjecture (Theorem 6.7.3).

6.7.1 Theorem (Hasse-Welil, [76])If (¢ (s) = 0, thenRes = 1/2.
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6.7.2 Corollary. Lety € E. If Lr(y,s) =0, thenRes = 1/2—Rey.
Proof. This follows immediately from the theorem and Proposition 2.2.11
The Ramanujan-Petersson conjecture holds true for@ver global function fields.

6.7.3 Theorem (Drinfeld, [17]). Every irreducible subrepresentatidn of 4, is a tem-
pered representation.

6.7.4 Recall from paragraph 2.3.16 th&{ -, y) generates a subrepresentationdothat
is isomorphic toP (). Furthermore, if C 4 is generated byE( -, x),..., E™ (-, )
asGa-module, and’’ € A by E(-,x),.... E®~D(. y), then by Proposition 3.3.3 also
the quotient representatidn/ V' is isomorphic ta? (x). Thus the isomorphism types of

all irreducible subquotients & are determined by the irreducible subrepresentations of

tor
nr
8t0r'

This has the following implication. Let C €™ be an invariant subspace and let
S C |X| be a subset that generates/Cl If for every #Hg-eigenfunctionf € V' with
eigencharactek s andx € S, the eigenvalué.; (@) € (—(gx + 1), gx + 1), then every
irreducible subquotient oF is unitarizable. If for evenyg-eigenfunctionf € V' with
eigencharactex, there is a place € | X| such thai s (&) € [-2¢x'%,2¢1+/%], then every
irreducible subquotient df is a tempered representation.

6.7.5 Theorem. The irreducible unramified subquotients of the representation space of
toroidal automorphic forms are tempered representations.

Proof. Every subrepresentation of is generated by elements X, and by Theo-
rem 6.1.8, we know thatX, is finite-dimensional. It is thus contained X, , which
decomposes by Theorem 3.6.3 into the three @ftsRX and AX.

ConcerningéX, we know from Corollary 6.2.4 that only for thg € C such that
(E(xoNgsr,1/2) = 0 for any quadratic field extensiofl of F, the Eisenstein series
E(-,y) can be toroidal, which generates a subrepresentatiofibtthat is isomorphic
to £(x). By Corollary 6.7.2, Rg = 0, and by Lemma 6.6.3P(y) is thus a tempered
representation. By paragraph 6.7.4, there will not occur any other isomorphism types for
further irreducible subquotients M than those generated by Eisenstein series, thus we
showed that all irreducible subquotients&ff, are tempered representations.

By Theorem 6.3.8;R{t, = 0, and Theorems 3.5.2 and 6.7.3 yield th&]},, decom-
poses into a direct sum of tempered representations.



CHAPTER 7

Graphs for genug

This chapter determines the graphs of Hecke operators of dégfréee curve

is of genusl. Atiyah’'s classification of vector bundles over an elliptic curve
over an algebraic closed field ([5]) can be used to investigate the vertices. The
calculation of the edges makes use of both Atiyah’s work and methods from
Chapter 5.

7.1 \Vertices

In this section, we determine all isomorphism classes of projective line bundles for a
curve X over F, of genusl. Propositions 5.2.3 and 5.2.4 already give a characterisa-
tion of PBurgecX andPBunf X, respectively, in terms of the class groupsXofand of

its quadratic extensioX’ = X ® F,. We are left with understanding the structure of

PBund X.

7.1.1 Let X be a curve of genus overF, with function field F, CIX the divisor class
group andiry the class number. The canonical shegf is isomorphic to the structure
sheaf@x ([28, Ch. IV, Ex. 1.3.6]). The mag(F,) — ClI' X obtained by considering an
F,-rational point as a prime divisor, is a bijection ([28, Ch. IV, Ex. 1.3.7]). We identify
these sets. The choice of ag e X(F,) defines the bijection

X(F,) — CI°x.
x > [x]=[xo]

So X(F,) inherits a group structure arki becomes an elliptic curve. For this reason, a
global function field of genus is also called an elliptic function field.

7.1.2 The Riemann-Roch theorem reduces toglif(£) —dimg,, I'(£~') =degf. Since
I'(£) isnon-zero if and only iff is associated to an effective divisor ([28, Prop. 11.7.7(a)]),
we obtain:

0 if degL <0andf # Oy,
dimg, ['(£) = 1 if £~ Oy, and
degf if degf > 0.

115



116 Graphs for genus CHAPTER7Y

By Serre duality, EXt(Ox,Ox) ~ Hom(Ox, Ox) ~ I'(Ox) is one-dimensional. Thus
PExt! (0x,Ox) contains only one element. This determines a rabkndle.M, by para-
graph 5.3.3. Sincé(Ox,Mp) = 0, Lemma 5.3.6 implies that(My) = 0, and since
Mo # Ox ® Ox, the vector bundleM, is indecomposable. Proposition 5.3.8, in turn,
implies thatl.M,] ¢ PBurf X, hence[M,] € PBund X. We call this class,.

Recall thatf,. denotes the line bundle associated to the divisor dlgss Cl X. For
a placex of degreel, the F,-vectorspace EX{Ox, £) >~ Hom(Ox, £x) ~ T'(Ly) is
also one-dimensional, and defines a rardundle M, (cf. paragraph 5.3.3). In this case,
8(Ox, M) = degUx —degf, = —1, because itM, would have a subbundli — M,
of degreel, Lemma 5.3.6 would imply tha#(, decomposes int@x & £. Such a de-
composition cannot exist, sinc¥, was chosen to be a nontrivial extensiontaf by Ox .
Becaus&(My) = §(Ox.Mx) (mod?2), we obtain that(M,) = —1, and by Proposition
5.3.8, thaf.M,] € PBuny X. We denote this class by.

7.1.3 Remark. Note that the notation for the vector bundig, of the previous paragraph
is the same as the notation for the stalk of some vector bumidx. To avoid confusion,
we will reserve the notatio, strictly for the vector bundle defined in the last paragraph
throughout the whole chapter.

SinceX(F;) = ClI! X, the graph of®, depends only on the divisor class.of The
verticescp andzp/, where[D] € CIX and[D’] € CI X’ depend also only on the divisor
classes ofD and D’ (Propositions 5.2.3 and 5.2.4), respectively. This justifies that there
will arise no ambiguity if we allow ourselves to substit(ife] € CI X by D € CIX and
[D'] € CIX' by D' € Cl X’ for better readability.

7.1.4 Proposition.
PBungiX = {sx |x€C|1X} I {so},
and sy = s, ifand onlyif (x —y) € 2CI° X.

Proof. Let i)’j(Y) be the set of isomorphism classes of geometrically indecomposable
rank n bundles overY that have degred. The symbolY denotes one o, X', or

X = X ®F, with F, being the algebraic closure Bf,. Observe that we have inclusions
B4(X)c BY(X') c B4(X), cf. 5.2.1. For arank bundle£ overY, the map

BLY) — Bit(Y)
M — MRJL"

defines a bijection of sets for eveilyr € Z andn > 1. We have to determine the orbits
under Pi€ X of 82(X) and 8. (X) to verify the proposition. We already know thét, €
BI(X) and My € BI(X) forall x e CI' X.

For the cas@ = 0, we use the following result of Atiyah.

7.1.5 Theorem ([5, Thm. 5 (ii)]). For all M, M € B2(X), there exists a uniqué e
Pic® X such thatM ~ M’ ® &£.

This implies that for everyM € B2 (X), there exists a uniqué Pic® X such that
M >~ Mo ® £. But the action of PitX and GalF, / F,) on vector bundles oveX com-
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mute, and thus for every GaI(Eq /Fq),
Moy@L? >~ (MgR®L)? ~ M >~ M ~ MgQRL .

By uniquenesst’ ~ £, and thust € Pic” X. Hence[M] = s¢ € PBurlgi X.
__ Ford =1, we restate Atiyah'’s classification of indecomposable vector bundles over
X.

7.1.6 Theorem ([5, Thm. 7]). There are bijectiong? : 8¢ (X) — Pic’(X) such that the
diagrams

d_ (or‘li -0/ v
Bi(X) ——Pic’(X)

ldet \L(n,d)
d

— 4 N
84 (X) —— Pid(X)
commute for ald € Z andn > 1. Here, (n,d) denotes multiplication with the greatest
common divisor of andd .

This means that det8. (X) — 8! (X) is a bijection, and consequently the restriction
det: B1(X) — B1(X) is still injective. Because every element8f (X) is of the form
£ for some placer of degreel and because det(x) ~ £, € B{(X), we obtain that
BI(X) = {M;|]x eCI' X},

By the injectivity of the determinant map{, ~ M, ® £ for some£ € Pic’ X if and
only if detM, ~ det(M, ® £) ~ (detM,) ® £2, or, equivalently(x — y) € 2CI° X. This
proves Proposition 7.1.4. O

7.1.7 Remark. This proposition shows that projective line bundles that are geometrically
indecomposable behave differently from those that decompose after extension of con-
stants, cf. Lemma 5.2.5. —y ¢ 2CI° X, thens, ands, are not isomorphic. However
there is a finite constant extensioniof— X such that — y € 2CI° Y, since geometrically

the class group of an elliptic curve is divisible. Thysands, become isomorphic over

Y. For a concrete example, considér= X, andY = X as in paragraph 7.3.3.

7.1.8 Corollary. If a rank 2 bundleM has§(M) = —1 anddetM ~ £, thenM repre-
sentssy.

Proof. A rank?2 bundleM with §(M) = —1 must be geometrically indecomposable. The
corollary follows from the fact that every element8f (X) is characterised by its deter-
minant. O

7.1.9 Corollary. Let x € X(F,;). Then the nucleusv, of the graph§, consists of the
vertices

Vert Ny = {tp}pecixr U {sx }xecﬂx I {so} I {cp }DeCI"XUCI‘X'

Proof. By definition, the nucleus contains all vertices Vert g, with §(v) < 1. In par-
ticular, N, containsPBuni X, which is described in Proposition 5.2@Bund' X, which
is described in Proposition 7.1.4, and the verti@@PBun‘z’eCX with §(v) < 1, which are
as in the corollary by Proposition 5.2.3.0
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7.2 Edges

Let x be a place of degrekand let®,. be defined as in 1.4.2. Theorem 5.4.9 and Propo-
sition 7.1.4 determine the graph of @, up to the edges of the nuclewé as illustrated
in Figure 7.1.

For an elliptic curve, the divisor classes of degv@an be represented by the difference
of two divisors of degreé, or more precisely —x runs through G X as: varies through
all degreel places whilex is fixed. We characterise all the missing edge¥.af

7.2.1 Theorem. Let x be a prime divisor of degreeand i, = #CI° X[2] the cardinality
of the 2-torsion of the class group. Then the edges with originMp are given by the
following list.

Ux(co) ={(co.cx,q+ 1)},
Uy (cx) = {(cx,c2x, 1), (¢x, €0, 1), (cx, 50,9 — D},
Uy (cy) = {(cys Cytx. D, €y, Cy—x,q)} if y # x,
Ux(cy—x) ={(cy—x.¢y.2),(cy—x.5y.q—1)}  ify#x, buty—x e (ClX)[2],
Ux (cy—x) = {(cy—x,cy, 1), (cy—x,C2x—y, 1), (¢y—x,Sy,q — 1)} if y —x ¢ (ClX)[2],
Ux(s0) = {(s0,Cx, 1), (50,5x,9)} »
Ux(tp) ={(tp.Sx+D+op.q+ 1)} forDeCI°X'—CI° X, and
Ux(sy) = {(sy,50.h2) |if y=x (mod 2CI° X))
if (z—x)e(CI° X)[2], }
z#x,and(z—y)e2Cl0 X
if (z—x)¢(CI° X)[2], }
and(z—y)e2Cl0x
if De(Cl® X’—CI® X),2DeCl X, }
andy=D+oD+x (mod2CI° X)

if De(CI® X’—CI® X),2D¢CI° X,
( ).2D¢ } fory e CI' X.
andy=D+oD+x (mod2Cl®X)

U { (Sy,cz—x, %hZ)

) (Sy,cz—x,hZ)

{
U {(sy,;D,ghz)
{

U

(8y.tp,h2)

Remark on illustrations: There are illustrations of these sets at the appropriate places in
the proof. We draw verticesfrom left to right in order of increasing value éfv). At the
end of this section and in section 7.3 one finds illustrations of entire graphs.

Proof. We recall some results that we will use in the proof without further reference. If
v andw are ®,-neighbours, theid(w) = §(v) £ 1 (Lemma 5.4.2). The weights of all
®,-neighbours of each vertex sum upgte- 1 (Proposition 4.2.4). Thé,-neighbours’

of a vertexv = [M] with §(v") = §(v) + 1 counted with multiplicity are in bijection with
the maximal subbundles gt (Lemma 5.4.4). This bijection is given by taking a maximal
subbundlef — M (paragraph 5.4.3) to its associated sequence. Recalffthé& the
kernel ofOx — K, (paragraph 5.4.1) and thé&t, denotes the line bundle associated to
the divisorx. We prove the theorem case by case.
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nucleus cusps
1 q 1
[ ] [ ] .'4' [ L 2
PBunj X PBunS' X
. PBun$e X
1 q 1
[ ] [ ] [ ] [ L 2
..... \ \ \\\
-2 —1 0 1 2 o

Figure 7.1:§, up to a finite number of edges

e Theorem 5.4.6 describ@s, (co) completely:
qg+1
Co Cy

o Let M = £, @ Ox represent,. We know from Theorem 5.4.6 that, is the only
neighbourM’ with §(.M") = 2. It has multiplicity1 and is given by the sequence associated
to £, — M. By Lemma 5.4.13, the sequence associatalsto—> M givesOx & Ox as
neighbour. For all otheg — 1 neighboursM’, neither€, — M nor Ox — M lifts to
M, but thenf, g, C £x — M lifts to a subbundl®y ~ £, g — M’'. We have that
detM’ ~ (detM)Jx ~ Ox, but Ox — M’ cannot have a complement, since otherwise
Ox — M would lift. Thus.M’ must represensy. This describedl (cy):

o Let M = £, ® Ox represent,, with y # x. Again, we know that, . is the only
neighbourM’ with §(.M’) = 2, and it has multiplicityl. For all otherg neighbours,
£, 3x — M is asubbundle, and(’ / £, . ~ Ox. But sincet, . # Ox, we have that
Ext' (£, dx,Ox) = 0 (paragraph 7.1.2), and thug’ decomposes. We obtain fidt (cy):

q 1
r—— 40— Pp—0
Cy—x Cy Cy+x

o Let M = £, @ £, represent,_, with y # x. Then the sequences associated to the
two maximal subbundle£€, — M and £, — M determine two neighbour¥, & Ox
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and£, 4 @ £x. They both decompose by Lemma 5.4.13 and repraseahdcax—,,
respectively. For all othey — 1 neighboursM’, no maximal line bundle lifts, and thus
(M) = —1. Since de’ ~ £, £, Jx ~ &£,, by Corollary 7.1.8 M’ represents,. We
havec,x—y = ¢, if and only if £2£,' ~ &, or equivalently,(c,‘tix;ﬁ;l)2 ~ Ox. This
means that these two neighbours are the same if and only-if € (Cl X)[2]. If this is
the case, we get fotl ; (cy—x):

qg—1 2
= ¢ — o
Sy Cy—x cy

o If x—y ¢ (CIX)[2], Us(cy—x) loOKS like:

e Let M be the bundleW, of paragraph 7.1.2, which represergs Then it has a unique
maximal subbundl@y — M and an associated neighbodt’ with §(.4’) = 1, which
decomposes. Because its maximal subbundlgyis> M, detM’ ~ 4., and we recognise
itasOx @ ¢.. ThusM' represents,. All ¢ other neighboursW’ have§(M') = —1 =
S(M' ® £x), and detM’' ® £;) ~ g £2 ~ £,. By Corollary 7.1.8 M’ ® £, and thus
alsoM’ represent,, and U (so) is as follows:

q 1
r— O —P—0
Sy ) Cy

e Let M representp foraD e CI° X’ —CI° X. Sinces(tp) = —2, every neighbous’
of M must haves(M’) = —1. It is determined by its determinant, which we can calcu-
late by extending constants &'. We have deM’ ~ ¢, de{(£p & L£op) =~ $xLpLob-
Because-x + D +0D = x+ D +0D (mod2ClX), Corollary 7.1.8 implies thai/’
represents, p+op. We obtain forl, (¢p):

q+1

Ip Sx+D+o0D

e The most subtle part is to determine the neighbouss &r y € Cl'X. We chooseM,,
as representative fay,, see paragraph 7.1.2, and recall that it was defined by a nontrivial
element in Ext(Ox,£,). Thus detM,) = £,, and§(M,) = —1. Look at an exact
sequence

0 M My Ky 0

Then detM’) ~ (detM,) gy ~ £y € Pic® X, and§(M') € {~2,0}. By Proposition
4.4.3,s, must also be a neighbour pft’]. But we have already determined the neighbours
of verticesv with these properties. We find that fér — x) € CI°X — {0}, ¢, is a
neighbour ofs, if and only if y = z (mod2CI° X), tp with D e CI°X'—CI°X is a
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neighbour ofs,, if and only if y = x + D + oD (mod2CI° X), ands is a neighbour of
sy ifand only if y = x (mod 2CI° X), butc is never a neighbour of,. This shows that
the theorem lists precisely the neighboursspf There is still some work to be done to
determine the weights. We begin with an observation.

7.2.2 Lemma. Up to isomorphism with fixed(,, there is at most one exact sequence
0—> M — My, - Ky — 0 forafixedM .

Proof. Suppose there are two. We derive a contradiction as follow&(M") #~ 0, then
M’ must be a trace of a line bundié defined overX’. By extending constants 16,2,
we may thus assume thétM’) = 0 and that there ar&, £’ € Pic’ X such thatM’ is an
extension off’ by £. The compositiorif — M’ — M defines a maximal subbundle of
M becausé (£, M) = —1. We get back the inclusioM’ — M by taking the associated
sequence. Since we assume we have two different inclusion§ @fto M, we get two
different subbundles of the ford — M, thus an inclusiorf & £ — M. The cokernel
is a torsion sheaf of degrdedefined overF 2, say X, for a placex’ of F . ', and we
obtain an exact sequence

0—=Lp L eMy J{xl 0.

co = [£ @ £] is thus and,/-neighbour ofM,. This is a contradiction as, is not a
neighbour oky. O

We consider a second neighbou’ of M,, that represents the same elementésn
PBunX,ie. M" ~ M ® £, for somef, € PicX. Since they have the same determinant,
£32 ~ detM' ® £o)(detM’)~! ~ (detM”)(detM’)~! ~ O, meaningL, € (PicX)[2].

On the other hand, Theorem 7.1.6 tells us thatftr € 8, (X), M, ® £ =~ M, if and
only if £¢ € (PicX)[2]. Thus(PicX)[2] acts on the sequences that we investigate. By
Lemma 7.2.2, we find that the multiplicity of a neighbouf of M, equals the number of
isomorphism classes that’ ® £, meets ast, varies throughPicX)[2] = (Pic” X)[2].

We begin with the case of a neighbol’ that is associated to a maximal subbundle
£ — My. Thend(L, M) =0. If M' /L ~ &£, the only possibility with these prop-
erties issg. But then£ — M’ is the only maximal subbundle, so &l ® £, with
£o € (Pic® X)[2] have different associated sequences, and the multiplicity &f there-
fore hy, = #(Pic® X)[2].

If £ :=M' /£ # £, thenM represents,_, for the divisor(z — x) € CI° X that
satisfies?,_, ~ £'£71L. Sincef,_x ~ detM’ ~ ££', we havez = y (mod 2CI°X).
The rank2 bundle M’ has two different maximal subbundles, and it could happen that
M ~ M ® £, for someL, € (Pic® X)[2] — {Ox}. This only happens ift’ ~ ££0, so
£'271 e (Pid® X)[2], or equivalently(z — x) € (CI° X)[2]. Thus the multiplicity ofc,_
as a neighbour of,, is h,/2 if (z —x) € (CI° X)[2] — {0} andh, if (z—x) ¢ (CI° X)[2].

The last case is that 6{-M") = —2, whereM’ is the trace of a line bundl#p, where
D € CI° X’ —CI° X. If we lift the situation toX’, thenM’ ~ £p & £,p, and we see as
in the preceding case that’ ~ M’ ® £, for some¥, € (Pic” X)[2] — {Ox} if and only
if D—oD e (CI°X)[2]. This is equivalent to the two conditiol3 —oD < CI° X and
2D —20D =0,0r2D = (D —0oD)+ (D +0D) € Cl° X and2D = o(2D), respectively,
both saying thaeD € CI° X. This finally gives forD e CI° X’ —CI° X thatsp has mul-
tiplicity /,/2 as neighbour of, if 2D € CI° X andh, if 2D ¢ CI° X. We illustrate this
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below. The dashed arrow only occursyif- x € 2CI° X. The indicesz and D take all
possible values as in the theorem, and {1/2, 1} depends on the particular edge.

Ip

This completes the proof of the theoremo

7.2.3 Remark. In Remark 5.1.13, we explained the connection between the graphs that
Serre considers in [60] and graphs of Hecke operators. In [64], Takahashi classified Serre’s
graphs for places of degreel and genus by elementary matrix calculations. If the class
number is odd, then Serre’s graph coincides wdthwithout weights. If, however, the
class number is even, then these two notions of graphs produce different objects.

When we calculate the space of unramified toroidal automorphic forms, we also need
to evaluateg, for different placesc. Namely, we will use of the graphg, for all iy
placesx of degreel. It is not visible from [64] how the vertices of the graphs for various
places of degret relate to each other, but Theorem 7.2.1 makes this clear.

7.2.4 (Odd class number)Let the class numbér = hx be odd andv a place of degree
1. Then¥, has only one component. We write, z,,...,z;} = CI' X where thez;'s are
ordered such thab; —x = x —z3;41 fori =1,...,(h—1)/2 and{ty,...,1,»} = PBunj X.
Then we can illustrate the graph &f; as in Figure 7.2.

Co+x

Cz3+x

q 1

Cop1+x

q 1

Coptx

Figure 7.2:6, for a degree one placeof an elliptic curve with odd class number
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7.3 Examples

This section provides some examples of illustrations of graphs of Hecke operators.

7.3.1 Example. The easiest examples are given by elliptic curves with only one ratio-
nal pointx and can be found in the literature, cf. [15], [60, 2.4.4 and Ex. 3 of 2.4]
or [64]. There are up to isomorphism three such elliptic curv&s: over F, defined

by the Weierstrass equatidf® + Y = X3 + X + 1, X5 over F; defined by the Weier-
strass equatiolr> = X> 42X + 2 and X, over F, defined by the Weierstrass equation
Y2+4+Y = X3 +a with F, = F5(«). Since the class numberisPBung‘ECXq7 = {Cnxn>0

and PBun' X, = {so,sx} for ¢ € {2,3,4}. One calculates that 81X, ® F4) ~ 2/5Z,
CI°(X3®Fo) ~ Z/7Z and CP (X4 ® F16) ~ Z/9Z, thusPBur X, hasq different ele-
mentsty, ..., 1, for g € {2,3,4}. We obtain Figure 7.3.

I

(&)

Figure 7.3:6, for the unique degree one placef the elliptic curvesX, forg = 2,3, 4

We give two examples for elliptic curves with even class number. Both examples
are elliptic curves oveF; with class numbed, but with respective-torsionZ/4Z and
(Z/22)2.

7.3.2 Example. The first example is the elliptic cun&; overF; defined by the Weier-
strass equatioll > = X* + X + 2, which has class group €Xs ~ 7/4Z = {x,y,z.z'},
wherex — y is the element of ord&. The number of componentsiis = 2, andPBung' X

is given byso, sx = s, ands; = s,». The class group okl = X5 ® Fg is ol X~
(Z2/42)?, thus CP X,/ CI° X5 ~ Z/4Z. Let{0,D, D', D"} be representatives such that
D is the divisor with2D € CI° Xs. Then PBurj X5 contains the two elements and
tpr = tpr. We do not need to calculate the norm maBEg — CI° X5 as we can find
out to which oftp andtp- the vertices, ands, are connected by the constraint that the
weights around, ands,, respectively, sum up té&. The graph is illustrated in Figure 7.4.

7.3.3 Example. The second exampl&s over F; is defined by the Weierstrass equation
Y? = X3+2X, and has class group T ~ (Z2/22)? = {x,y,z,w}. Hereh, = 4, and

sx, Sy, §; ands,, are pairwise distinct vertices. Fdf, = X ® Fo, CI® X} ~ (Z/4Z)?,

thus CP X/ / CI° X ~ (Z/22)?, which we represent b§0, D, D», D3}, each of theD;
being of order2. Again, by the constraint that weights around each vertex sum dp to
we find thatPBunj X contains three different traces of the line bundles corresponding to
D, D, and D3, which we denote by, ¢, andt,,, and which are connected i@, s, and

sw, respectively. The graph is illustrated in Figure 7.5.
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Figure 7.4:6, for a degree one placeof the elliptic curvesXs

4
4 00\ 1 301
3 1 2 o
Sx Cx Cox
S0
2 2 2 2 3 1 3 1
ty Sy Cy—x cy Cytx
2 2 2 2 3 1 3 1
I Sz Cz—x Cz Catx
2 2 2 2 3 1 3 1
ty Sw Cw—x Cy Cyw+tx

Figure 7.5:6, for a degree one placeof the elliptic curvesXs



CHAPTER 8

Toroidal automorphic forms for genus

The aim of this chapter is to investigate the space of unramified toroidal au-
tomorphic forms for a global function field of genusl. The strategy is as
follows: If F’ denotes the quadratic constant field extensio pthen the
results from Chapter 6 provide precise conditions on the functions in the com-
pleted Eisenstein part to bf¢’-toroidal. Theorem 6.1.2 yields a translation of
the toroidal condition foF’ as a linear equation in the values of an unramified
F’-toroidal automorphic form, which can be interpreted in terms of values at
vertices of the graph of an unramified Hecke operator. Together with eigen-
value equations for various Hecke operators, which are calculated using the
results from Chapter 7, this excludes the existence of nontrivial toroidal cusp
forms. This finally leads to the conclusion that at least one and at most two of
the unramifiedF’-toroidal automorphic forms are toroidal. In the last section,
we discuss how close the developed methods get to a proof of the Riemann
hypothesis for function fields of genusi.e. the theorem of Hasse ([29, 8§4]).

8.1 Eigenvalue equations

In this section, we formulate eigenvalue equationsAx-eigenfunctions, which can be
extracted from the graphs that we determined in the previous chapter. First, we fix some
notation that will be used throughout this chapter.

8.1.1 Let F be an elliptic function field, i.e. the function field of a cur¥eof genusl.
Let F, be the the field of constants, Elthe divisor class group arigy the class number.
Recall from paragraph 7.1.1 that the setrgtrational pointsX(F;) = {x1,...,xp, } Of
X, considered as prime divisors, is in one-to-one correspondence with the set of divisor
classes CIX of degreel on X. We identify these sets. Lgt: X' = X ® F,2 — X be
the covering by the constant extension of degraed letF’ = F > F be the function field
of X’. The mapp* : CI X — CI X’ is injective, so we may and will consider €las a
subgroup of CK’. Let o denote the nontrivial element of the Galois groupFof F .

As in Chapter 7, we writdD € Cl X, where we, strictly speaking, waiiit to denote
a divisor and not a divisor class. But since no ambiguity arises as explained in Remark
7.1.3, we allow ourselves this misuse of notation in favour of better readabilify.isfa
divisor of degred, then there is for any chosene CI' X a uniquez € CI' X such that
z —x represents the same divisor classbadf we fix x and writez — x € CI° X, we make

125
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implicit use of this fact.
Let x be a place of degrekand define the following numbers:

h =hx =#CPX =#cp}pccy x» B =#CI°X’/CI°X),
hy = #CP X[2] = #{sy}yex(r,)- by, = #CI°X’/CI’ X)[2],
ro= (h +h2)/2_1 :#{CD}D€C|0X_{()}7 ro= (h/+h/2)/2_1 :#{ZD}D€C|X’—C|X~

The equality in the definition df, follows from Proposition 7.1.4, the equality in def-
inition of 7 andr from Proposition 5.2.3 and the equality in definitionv6from Proposi-
tion 5.2.4. Figure 8.1 shows certain subsets of ¥grtEach dashed subset of V&t is
defined by the set written underneath. The integer written to the right is its cardinality. A
line between two dashed areas indicate that there is at least one edgéétween two
vertices in the corresponding subsets.

. o . .
° {CO}‘;—)l\" ° °
/

f | | f |

I I I I I

I | R o L— 000 I ! I

. ° ‘/“ _/ . .

I | : : {So BN 1 I | I |

. . , . .

T ° ! T \

I . 2 I I I

REPE REPEEE AP

! | L@ b | ! |

I | <’ I |y I | I |

el {sy}yex(r,) Ky Lo Ky
{tp}pecix'—cix {CD}DQCIOX_{O} {CD}DeCII X {CD}DecﬂX

Figure 8.1: Certain subsets of Vet and their cardinalities

8.1.2Lemma.h’ = 2(q+1)—h.

Proof. Fix a placex of degreel and considels,. We count the weights around tlheg
verticess,,, wherey varies through ClX modulo adding a class itCI° X. By Proposi-
tion 4.2.4, the weights around each of thevertices add up tg + 1. On the other hand,
Theorem 7.2.1 tells us precisely which vertices occubasneighbours of the,’s and
with which weight. We count all weights around thes:

e The vertexsy occurs with weighti,.

e The vertexc,_, occurs with weight, if z—x € CI° X — {0} andz —x # x —z.

e The vertex,_, occurs with weighti, /2 if z—x € CI° X —{0} andz —x = x —z.

e The vertextp occurs with weighti, if D € CI X’ —CIX and2D ¢ ClI X.

e The vertextp occurs with weighti, /2 if D € CI X’ —ClX and2D € Cl X.
Sincec,—x = cx—z, the sum of the weights of the _,'s is (h,/2)(h—1). Sincetp =t_p
andrp depends only on the class Bf modulo CLX, the sum of the weights of thg’s is
(h2/2)(h' —1). Adding up all these contributions gives

ha(g+1) = ha + (h2/2) (h—1) + (h2/2) (W 1),
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which implies the relation of the lemma. o

8.1.3 Remark. This result can also be obtained from the equdlity(s) = {r (s) L F (1. 5),
wherey = | |”'/'”q is the quasi-character correspondingfbby class field theory. For
curves of genus, these function can be written out explicitly as

T+ (W —q*>—1)T>*+1  qT*+(h—q—DT+1 qT*—(h—q—1DT +1
(1-T>)(1-¢?T?) B (1-T)(A—qT) (I+T)(1+4T)

whereT = ¢—5. Comparing the coefficients of the numerators of these rational functions
in T yields an alternative proof of the lemma.

8.1.4 Remark. Over an algebraically closed field, tBdorsion of an elliptic curve is iso-
morphic toZ/2Z x Z /2Z if the characteristic is ndt and it is either trivial or isomorphic

to Z/2Z if the characteristic i€, depending on whether the curve is supersingular or not
([62, Cor. 6.4,Thm. 3.1]). Hende, and//, can bel, 2 or 4, where the last case only occurs

if ¢ is odd.

The previous lemma implies thatis odd if and only if4’ is odd. Since an abelian
group has trivial-torsion precisely when its order is odd, this implies that= 1 if and
only if h, = 1.

In characteristi@, we thus always have that, = h,. It is not clear to me whether it
can happen in odd characteristic that one of Botlnd/) is 2, while the other one ig.

8.1.5 Let f € AKX be anJx-eigenfunction with eigencharactéy. For allx € |X|, put
Ax = Ar(®x). The unramified automorphic fornd can be seen as a function on the
vertices of the graph of an unramified Hecke operator, so we can evaluate the eigenvalue
equations
Dy f = Ax f

with help of Theorem 7.2.1 at each vertex for each placé degreel.

For every placer of degreel we obtain the following equations for the vertices in the
nucleus ofd,.. Note that the expressions in the right-most column are labels, which will
be used for the purpose of reference.

Ax f(tp) =(q+1) f(sD+oD+x) for D e CIX'-CIX, (x.tp)
Ax f(s0) = qf (sx) + flcx) (x.50)
Axflco) =(g+1)flex), (xx,co)
Axflez—x) = (q—1) f(s2) + f(cz) + flcax—z) Tforz e X(Fg)—1ix},  (x,cz—x)
Ax flex) = (q—1) f(s0) + f(co) + flcax) (x.cx)
Axf(cz) =Qf(cz—x)+f(cz+x) forz e X(Fq)_{x}’ (X,CZ)
A f(sy)=af(s0)+(ha/2) Y flez—x)+(h2/2) Y fltp) (x,5y)
(z—x)eCl® X [DleCciX’/CIX
(z—x)#0 [D]#CIX
(z—y)e2Cl0Xx D—oD+x—ye2Cl0Xx

hy, if (y—x)e2ClX,

for y € X(F;), wherea = { 0 if (y—x)¢2CI0X.
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If we add up all the eigenvalue equations evaluated in the verjcashere we lety
range over all ofX(F,) = CI! X, then we obtain that

D0 A flsy) = hf(so)+(h/2) Y flez—x)+(h/2) D f(tp). (x. Y sy)
y€X(Fg) (z—x)eCl0 X [D]eCIX’/CIX
(z—x)#0 [D]#CIX

8.2 The space of cusp forms

Let f be aJ¢k-eigenfunction that is contained inX. In particular, f is not trivial.

We make no assumption of toroidality ofiin this section. The cusp fornf satisfies

the eigenvalue equations of the previous paragraph and additiof@ljy= 0 if 6(v) > 1.

These equations make it possible to explicitly calculate the space of unramified cusp forms
as functions ofPBun, X. We get the following result.

8.2.1 Theorem.

(i) The dimension oftX isr’' +1—h,.
(i) The support off € Ag( is contained in{tp, so,Cco}pecix’/—ClX -
(i) If x is a place of odd degree, thé@n, (/) = 0.

Proof. Observe that from Theorems 3.2.2 and 3.5.1 and Corollary 3.5.4, it follows that

AF = P Ao(@x. )"
reC

for every placex, where both sides are finite dimensional complex vector spaces, thus
in particular 4o (®x,A)X = 0 for all but finitely manyA € C. Let f € AX be afk-
eigenfunction and a place of degreé. We first show that the eigenvalug of f under
@, equalsD.

Assume thak, # 0, then we conclude successively:

e f(co) =0 byequationg,cg).

e f(so) =0 by equationg,cy).

e f(c;—x)=0 forall placesz # x of degreel by equation £, c;).

e f(sy) =0 forall placesy of degreel by equationsx, so) and (x,c;—x).

e f(tp)=0 forall D € CIX'—CIlX by equationf,?p).
Thus f must be trivial, which contradicts the fact that it is &fx-eigenfunction. This
means thatto(®,, 1)K = 0if A # 0. ThereforeAX = Ay(D,,0)X.

So we know thak , = 0 for all placesx of degreel. We make the following successive
conclusions, where we always an appropriate plaoédegreel in every step:

e f(sy) =0 forall placesy of degreel by equation £.¢p).

e f(c.—x) =0 forall placesz # x of degreel by equation £, c;).
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o f(co)+(g—1)f(s0) =0 by equationg,cy).

o af(so)+(h2/2) Y. f(tp)=0 forallplacesy of degreel by equationg,s,),
[DleCiX’/ClIX
[Dl#CIX
D—oD+x—ye2Cl0Xx

wherea = h, if (y —x) € 2CI° X anda = 0 otherwise.

This means that the support ¢fis contained ifzp, s, co} peci x’—c1x,» Which proves (ii).

We havel, + 1 linearly independent equations fgr. There are no further restrictions
on the values of given by the eigenvalue equations since equationy) becomes trivial.
Hence the dimension oX = #4¢(®,,0)X equals

#1p.so.coypecix'—cix —(ha+1) = (' +2)—(ha+1) = r'+1—-hy,

which proves (i).
Assertion (iii) follows since the support of contains only vertices with 6(v) even
and thus Lemma 5.4.2 implies thé&f. ( /) = 0 for every placex of odd degree. O

8.2.2 Remark. The dimension formula also follows from calculations with theta series,
cf. Schleich [56, Satz 3.3.2] and Harder, Li and Weisinger [27, Thm. 5.1].

8.2.3 Proposition. If f € A{f is an g -eigenfunction, therf'(co) # 0.

Proof. Let f € ,A{f is anHk-eigenfunction with eigencharactéy such thatf(co) = 0.
We will deduce thatf must be the zero function, which is not dfx-eigenfunction by
definition. This will prove the lemma.

First we conclude from Theorem 8.2.1 and equatiopz{) that f(so) = 0. The only
other vertices that are possibly contained in the supporf afre of the formzp for a
D € CIX’'—CIlX. We fix an arbitraryD € Cl X' —Cl X for the rest of the proof.

SinceX'(F,2) = CI' X’ maps surjectively to Cx’/Cl X, andzp only depends on the
clasgD] € CIX'/ClX, thereis & € X'(F,2) such thatp =¢,. The coveringy : X' — X
mapsz as well as its conjugatez to a placey € | X| of degree2. As classes in CX’, we
havey =z +oz.

In the following, we will investigate the graph of the Hecke operatgwith the help
of the graphs of the Hecke operatdrs and®,,,, which are defined oveF’. Recall from
Lemma 5.2.5 that the map* : PBun, X — PBum, X’ restricts to an injective map

p*: PBUMS®°X L PBurf X < PBurg®x’,

and p* mapsPBung X to PBurd X’. We will denote the elements PBurfecx’ by ¢},

with D € CIX’. Then we have in particular thaf = p*(co), thatc,, ., = p*(cy) and
thatc,_,, = p*(t;), and in each case, there is no other veRBxin, X that is mapped to
Cos Chygzr @Nde,_, respectively.

Recall from paragraph 5.1.8 tha€, denotes the sheaf aki whose stalks are ftrivial
except for the one at, which equals, . If we denote byX, and.X, . the corresponding
sheaves oX’, we have thap* X, ~ X, ® K.

Let M, M’ € Bun, X fit into an exact sequence

0 M M Ky 0 .
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Extension of constants is an exact functor, thus we obtain an exact sequence

0 p*M/ p*MHJ{Z@J(azHO s
which splits into two exact sequences
0> M —p*M— K, =0 and 0—p*M > M — Ky; —0,

whereM” € Bun, X' is the kernel ofp* M — XK.
In the language of graphs, this means that for every edge

m
r———0

v v

between vertices, v’ € PBun, X in Edge$,, there are a vertex’ € PBurn, X', and edges

m m"

——»—o and

v v// V// V/

in Edge¥, and Edgeg, ;, respectively.

We apply this observation to find out all possibilities®f-neighbours ot,. The only
®,-neighbour oty is ¢,, and since # oz, the®,.-neighbours ot arec,—,, = p*(t;)
andc;4+4, = p*(cy). This means that the only possibig -neighbours ot aret, and
cy. Theorem 5.4.6 says thaj has multiplicityg + 1. Thus, by Proposition 4.2.4, the
neighbour, has multiplicity(¢> + 1) — (¢ + 1) = ¢> —q, hencell, (cp) can be illustrated
as

t; o)) Cy
By the assumptions ofi, it vanishes both afy and atc,,. Thus the eigenvalue equation

Ar(®y) fco) = (g+1) fley) +(¢*—q) f(t2)
implies thatf (tp) = f(t;) = 0, which completes the proof. O

8.3 The space of toroidal automorphic forms

Let F’ = F 2 F be the constant field extension Bfand let7’ C G be a torus correspond-
ingto F’. Let p: X’ — X be the map of curves that correspondstg F. Recall from
Definition 1.5.13 that we defined gfi€ + to be F’-toroidal if f7/(g) = 0 for all g € Ga.
Theorem 6.1.2 states that for an automorphic fofra A (F')X,

f(co) + § fp) = 0. (T)
[D]eCIX’/CIX
[D]£CI X

We will determine the space of unramifiéd-toroidal automorphic forms in this section
and draw conclusions about the space of unramified toroidal automorphic forms.
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8.3.1 Theorem.Let F' = F > F be the constant field extension Bf Then the space of
unramifiedF’-toroidal cusp forms is trivial.

Proof. Since the support of unramified cusp forms is containe@Bun} X U {so,co}
(Theorem 8.2.1), after multiplying b/ & equation &, Y _ s,) simplifies to

0 =2f(s0) + E Sf(p) .
[DleCIX’/ClX
[D]#£CIX

Subtracting equatiorif{) from it yields

0 = 2f(so) — flco)-

For cusp forms, equationx(c,) reads

0 = (g—1)f(s0) + f(co)

and this implies thatf(co) = f(so) = 0, thus by Proposition 8.2.3, there is -
eigenfunction in the!x -invariant spacéA, N Aw) X, and f must be zero. o

8.3.2 Remark. If the analogue of Waldspurger’s formula in [71, Prop. 7] for elliptic func-
tion fields is true, we deduce the following corollary: for every irreducible unramified
cuspidal representation over an elliptic function field(,1/2) # 0.

8.3.3 Theorem 6.2.11 puts the unramifigd-toroidal Eisenstein series in connection with
the zeros of the zeta-function 7. Let y p = | |”'/'”‘1, then by class field theory (Lemma
2.2.10),

Cri(s) = Cr(s)-Lr(xrr,s) = §F(S)'§F(S+%),

where we regard as an element i / |2n—72iz-
For a curve of genus,

qT* + (h—(g+ )T + 1
(1=T)(1—4qT) ’

whereT = ¢—* ([55, Thm. 5.9]). This means that

Cr(s) =

tr(s)=0 ifandonlyif ¢T>+ (h—(¢+1))T+1=0.

8.3.4 Lets be a zero ofr and recall the notion of a pair of zeros from paragraph 6.2.12.
Then{s, 1—s} is the only pair of zeros dfg, which is of orden, and{s — %, 1—s+ ﬁ
is the only pair of zeros of. g (x ¢/, - ), which is also of ordet.

Note thatF” is also of genus, but has larger constant fiekg,>. This means thajr-
has only one pair of zeros modui@]Z, but it vanishes at both pairs of zerps1 —s} and

{s— f%, 1—s+ &} as function ofs € C/ F21Z.
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8.3.5 Lemma. The following are equivalent.
(i) ¢p/ has a pair of zeros of orde.
(i) 5+ 2Inq is a zero oft .
(i) h=q+1.
Proof. Let s be a zero ofr. Then (i) holds if and only ifl —s =5+ m' (mod ﬁff]' Z),
which is equwalent to (ii).

Puts = 3 + 51, and7 = ¢~* =ig~"/2. Then
qi2g7' + (h—(g+1))ig7/2 +1 ig=1/2
é.F(S) - ( ~1/2 ) 1/2 = (h_(CI+1)) ia—1/2 ig1/2
(1—ig=12)(1—igq'/?) (1—ig=12)(1—igq'/2)
#0

is zero if and only ifh = g + 1, hence the equivalence of (ii) and (iii). O

1/2

8.3.6 Theorem.Lets + 1/2 be a zero ot r andW C E, be setof ally = w| | /* such

thatw? = 1, butw|co yx # 1. If i # g + 1, thensw(F')K is generated by

VECPLECI PP RC0 )

and ifh = g + 1, thensw(F’)X is generated by

{ECIPEOCIP).RC 0}

XEW ’
In particular, dim Aw (F)X = 2h,.

Proof. By Theorem 8.3.1, we hay@hior(F') N AO)K = 0 and by Theorem 6.3.7, we have
(Awr(F)N ,R)K = {R(-.))}gew. By definition,y = w| |'/? € W if and only if » is an
unramified character that factors throughXGi2Cl X and that is nontrivial restricted to
CI° F. As we have explained in the proof of Proposition 4.4.11 and in the beginning of
section 4.5, Ck /2CIl X is a group of ordeRh,. The character group of & /2Cl X is
of the same order. There are two quadratic characters suchfthat, is trivial, namely,
the trivial character anti|’”/'”q. Consequently, the cardinality & is 2/, — 2.

By Theorem 2.2.8, thé.-functionsL g/ (y, - ) are constant for quasi-characterof
A%, that are not of the formi|*. Hence the only toroidal Eisenstein series correspond to
the pairs of zeros of /. These arél1/2+s,1/2—s} and{1/2+s— ,n A/2—s+ & mq
and by the previous lemma, they are different and of oidérz # g + 1 and they are
equal and thus of orderif » = g + 1. This determinego(F) N S)K as indicated and
proves dim (F)X =2h,. O

8.3.7 Remark. In caseg = p® for a primep # 2,3 and an odd integer, the curveX is
isomorphic to a supersingular elliptic curve if and onlyiit= g + 1, cf. [73, Thm. 4.1].
For theseg, an elliptic curve with function field? is thus not supersingular if and only
if the space ofF ;- F-toroidal automorphic forms admits a basis 8k -eigenfunctions.
However, for otheg, there are supersingular elliptic curves with: ¢ + 1.
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8.3.8 Proposition. Lets +1/2 be azero of 7. Then(& N AR, (F & F))K is 2-dimensional
and generated by

{ECLP).EDVCP).

Proof. Let T C G be the diagonal torus ange E, such thaty? # | |i1. By Theorem
6.2.8 (ii),

Ere.y) = (L(x,1/2)*.

The only pair of zeros o.(x,1/2) is{| |*,] |~} and it is of orderl. Thus{| |°,| |} is
the only pair of zeros ofL(y, 1/2))2 anditis of ordeR. O

8.3.9 Let F be an elliptic function field with even class number. Then the class group
has a nontrivial character, of order2, which can be extended to a characjeof the
divisor class group of orderby Proposition 2.1.6. Equivalently,is an unramified quasi-
character oA of order2 that is trivial onF> and whose kernel does not contaij.

By class field theory, there is an unramified quadratic field extenkiofA such that
Ng,r(Ag) =kery. Let xg € Eq be the quasi-character that correspondsg taf. para-
graph 6.2.10. They = yg. Note thaty g is not equal td |* for anys € C, hencek is
not the constant field extension, but a separable geometric field extensionief the
constant field off equals the constant field @f.

8.3.10 Proposition. Let F be an elliptic function field with even class number. Then there
exist a separable geometric quadratic unramified field extensigh’. Let yg be the
corresponding quasi-character. Let+ 1/2 be a zero offr. Then(& N A{‘Orr(E))K is
2-dimensional and generated by

ECU)ECael D))

Proof. If the class group off' is of even order, then there exists a separable geometric
guadratic unramified field extensidty F as explained before.
By Corollary 6.2.4,E7(e, x) is E-toroidal if and only if y is a zero of

L(x,1/2)L(xxE.1/2).

The only pair of zeros of.(y,1/2) is {| |*,| |”*} and it is of orderl. The only pair of
zeros ofL(yxe.1/2)is{xe| . x5 | |”*}anditis of orden. O

8.3.11 Theorem.Let F be a elliptic function field with class numbkmand constant§ .
Lets+1/2 be azero ofr.

(i) If either the characteristic of is odd orh # g + 1, thenAZX, is 1-dimensional and
spanned by the Eisenstein serigé- ,| |°).

(i) If the characteristic ofF is2 andh = g + 1, thenAX, is either1-dimensional and

spanned byE( -.| |°) or 2-dimensional and spanned B (- .| |*), ED(-.| [*)}.

Proof. By Theorem 6.2.11AX containsE(-,| |*). The space4X, is the intersection of

the spacestX (E) for all quadratic separable algebra extensi@hg”. From Theorem
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6.3.8, we know thatt,, does not contain residues of Eisenstein series. Theorem 8.3.6 de-
scribesAX (F’) for the constant field extensiaf, which narrows down the possibilities

to al or 2-dimensional space spanned by certain functions from the Eisenstein part. In
particular, the description of these functions in Theorem 8.3.6 implies (ii).

If h # g+ 1, then g+ has simple zeros by Lemma 8.3.5. Hence the intersectigkfpf
with (& N AR (F @ F))K as described in Proposition 8.3.8liglimensional and spanned

Ol
by EC-.] [*).

If, however,ih = ¢ + 1, but the characteristic df is odd, therh = ¢ + 1 is even. There
is thus a separable geometric quadratic unramified field exte®sigh Sinceyr restricts
to a nontrivial character on the class group, the intersectiofffwith (& N A{‘Orr(E))K
as described in Proposition 8.3.10liglimensional and spanned &( -, | |*). O

8.3.12 Corollary. Let F be an elliptic function field with constant fieh§ and class num-
ber . If either the characteristic of" is not2 or & # g + 1, then there is for every € E¢
and for every € C a quadratic charactetw € E such thatL(yw, s) # 0.

Note that a proof of Conjecture 6.2.15 implies:

8.3.13 Conjecture.Let F be an elliptic function field of genusands + 1/2 a zero of

F(s). The space4X is 1-dimensional and spanned I8 - , | |*).

8.3.14 Remark. The proof of the last theorem depends on many results from the theory for
toroidal automorphic forms as developed in this thesis, including the proof of admissibility
of AQ,. In the particular case that the class numbdr, isowever, it is possible to deduce
the theorem comparatively quickly from results in the literature ([15]).

8.4 Impact on the Riemann hypothesis

As explained in Theorem 6.6.6, the analogue of the Riemann hypothesis for function fields
of genusl curves over finite fields follows from narrowing down the possibilities for the
eigenvalues of unramified toroid&x -eigenfunctions under one Hecke operabgrto lie

in [-2¢2/2,241/%]. We will investigate the eigenvalue equations enriched by the toroidal
condition and see how close we can come to this goal. For this, we will neither use the
explicit form of the zeta function nor the decomposition theory of the space of automor-
phic forms. We only apply the theory of graphs of Hecke operators to the connection
between zeros of the zeta function, toroidal Eisenstein series and unitarizable or tempered

representations as explained in Chapter 6.

8.4.11f AL is trivial, then it does not contain any Eisenstein series and therefore the
zeta function ofF has no zero (Corollary 6.2.13). Then the analogue of the Riemann
hypothesis holds for trivial reasons. Hence assume #f§tis not trivial. By finite-

dimensionality (Theorem 6.1.8)4X. contains an¥g-eigenfunction, which we denote

by f. Let furtherx e | X| and ®,(f) = A, f. Since0 lies in [—2q}/2,2q}/2], it is no
restriction to assume that # 0 for somex € X (F,).
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In the following lemma we will refer to the eigenvalue equations from paragraph 8.1.5
and the begin of section 8.3. L&t/ F be the constant field extension apnd X’ — X the
corresponding map of curves.

8.4.2 Lemma.If f is a toroidal #k-eigenfunction such that there exist a placeof
degreel and al # 0 with @, (f) = Af, then there are complex numbers, a1, b, fo,
fo, f1, whereb # 0, and a charactew : CI.X — {1} such that for ally, z € X(F,) with
z#x and all D € CI X' —Cl X, the equalities

f@p) =w(D+oD)b fsy) = w(y)ar f(s0) = ao
f(co) = fo flez—x) = 6U(Z_x)f()/ flex) = w(x) f1
Az =w(2)A

hold. The eigenvalue equations and the toroidal condition can be formulated as

Ab = (g + 1)ay by (x,tp),
Aao =qai + fr by (x,50),
Afo=(g+1)fi by (x, o),
Afo =(g—Dai+2fi by (x,cz—x).
Jot+ (W =1)b=0 by (T') if w|gpo x Is trivial,
fo—b=0 by (T) if |qo IS NOt trivial.

Proof. Let f be a toroidal#k-eigenfunctionx a place of degreé and aA # 0 such that
®,(f) = Af. First we reason thaf cannot vanish at all vertices of the forg.
Assume thatf(tp) = 0 for all D € CI X’ — CI X, then we conclude successively:

e f(co) =0 byequationT).

e f(sy) =0 forall placesy of degreel by equationf,p).

e f(cx) =0 forall placesx of degreel by equation £, c).

e f(s9) =0 by equationg,so).

o f(c;—x)=0 forall placesz # x of degreel by equation £,c,_y).
Hencef also vanishes on the cusps and is trivial. But/ég-eigenfunction is not trivial
by definition. This is a contradiction.

Let D € CI X’ —CIl X suchthatf(zp) # 0. Then equationx, tp) implies that we have

(g+1)f(sp—oD+x) = Ax f(tp) # 0. For everyz € X(F;) andD’ € CIX’'—CIX such
thatD’—oD’'+z—D+oD—x €2CI° X,

Az ftp)) = (q+ 1) f(sp'—oD7+2) = (¢ + 1) f(SD—0D+x) = Ax f(1D) .

In particular if we take = x, then f(tp/) = f(tp) if D’—oD’— D +0oD €2CI° X and
if we take D’ = D, thend, = A, if z—x € 2CI° X. By exchanging the roles of andz,
we obtain

Ax ftp) =(q+ 1) f(spr4op'+x) =(q@+ 1) f(Sp1op+z) = Az f(tD)
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and by multiplying both equalities, we get

A2 f(p) f(tp)) = A2f(tp) ftp'),

which means that, = £1,, and thus by the previous equatiof(¢p/) = £ f(tp). This
holds for allz € X(F;) andD e Cl X', since we can find &’ for everyz and az for every
D’ suchthatD’ —oD’4+z—D 40D —x €2CI°X.

Definew(z —x) := A, /A, to be the sign by whicih, and A, differ. Note thatw is
well-defined even if we vary, since ifz’ —x' =z—x andD’'—oD’+z—D+oD—x €
2CI° X, thenalsaD’ —oD’ 4z’ —D +0D —x’ € 2CI° X and thus\, f(tp') = Ay f(tp),
which implies thatt,- /A, = A, /A,. Clearly,w is multiplicative, and if we pub(x) = 1
for somex € X(F,), we obtain a charactes : Cl X — {£1}.

This means that if we defife= w(x)A, for onex € X(F;), then we have , = w(x)A
for all x € X(F,) and if we define = w(D —oD) f(tp) foroneD € Cl X' —Cl X, then
we havef(tp) = w(D —oD)b forall D e CIX'—-CIX.

From the equations

o(D—0D +x)Ab = Axf(tp) = (¢+1)f(5D-oD+x)

it follows that if we definer; = w(y) f(s,) for oney € X(F,), then f(s,) = w(y)a, for
all y € X(F,). In this notation, equation(¢p) becomestb = (g + 1)a;.
Putag = f(s¢) and fo = f(co). Equation &, co) implies

w(x)Afo = Axf(co) = (¢ +1) f(cx)

for everyx € X(F,), hence if we defing/; = w(x) f(cx) for onex € X(F,), then we have
Sf(cx) = w(x) fi for all x € X(F,), and equationx, co) becomes. fo = (g + 1) fi.
For allx,z € X(F,) such thatx # z, equation £, c;_,) implies

o(X)Af(cz—x) = Axf(cz—x)
= (=1 f(s2)+ flcz) + fleax—z) = (@—Dw(2)ar +2w(2) f1,

hence if we putfy = w(z —x) f(c.—x) for one choice ofz — x € Cl° X — {0}, then
f(cz—x) = w(z —x) fy for all choices ofz —x € CI° X — {0}, and equationx, c,_) be-
comestfy = (g —ai +2f1.
Observe that ifv is trivial on CP X, then equation®) becomesfy + (W' — 1)b = 0,
but if w is not trivial on CP X, it becomesfy —b = fo + (h'/2—1)b+ (=1)(h'/2)b = 0.
This proves everything. O

In the following discussion, we keep the notation of the lemma.
8.4.3 In the case thab is trivial on CP X, we conclude successively that
e fo=—(—1)b byequationT).

e a b by equationg,zp).

_ _A
1= g+1

o fi=—{=D2p by equation ¢, co).
/-1

o ap= qqﬁb—’;ﬁb by equation £, so).
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o fo=2L1b-2"b byequationg,c. ).

So far, we did not touch equation,(>_s,). Sincew is trivial on CP X, together with the
preceding identities, this equation yields that

A h h
hA ——b = hA = h —(h=1Dfg+=H-1)b
o= M = hao+ 3 0= i+ 50 -1

q n—1 h qg—1 n—1 h
() Py (= =2 ) + 2 — 1y
(q+1b q+1b)+2( )(q—i-lb g1 )+2( )

If we use thath’ = 2(¢g + 1) —h (Lemma 8.1.2), divide through (which is not zero by
assumption) and reorganise the terms, we find out that

A2 = (g+1-h)>.
8.4.4 In the case thab is not trivial on CP X, we conclude successively that

e fo=b byequationT).

e ay=ZAb=fi byequationsX,ip)and ,co).
e a9 =b byequationg,sy).

e fo=b byequationg,c,_y).

e Aa; =(q+1)b byequationg,s,).

All these equations can hold only if
2 =(g+1)>°.

We summarise what we found out in this section about the eigenvalues of a toroidal
Hk-eigenfunction. LeX (F,) = {xi,...,x;} the set ofF,-rational points.

8.4.5 Proposition. Let f € AKX, be an#k-eigenfunction with eigencharactery. Then
there are only the following possibilities for the eigenvaldgs,..., Ay, .

(i) Ay == Ay, =0.
(i) Thereisal € C* withA? = (¢ +1—h)? andA, = A for every place: of degreel.

(iii) There is a charactew : Cl X — {41} that is not trivial onCI® X and aA € C* with
A% = (g +1)? such thatA, = w(z)A for every place: of degreel.

8.4.6 We discuss whicly € AX. can have the eigenvalues as described in the proposition.
Recall from paragraph 3.7.18 that givéR,,...,Ay,, there is up to constant multiple at
most oneXk-eigenfunctionf € & such thatd,, f =1, f foralli =1,...,h. Recall
from Lemmas 3.3.2 and 3.4.2 that(x) = ¢'/2(x ! (n;) + x(r2)) is the eigenvalue of
E(-,y) underd, for everyz € | X| andy € Eo.

If Ax, =+~ =21y, =0, thenf is a linear combination of( -, | |¥1/2In4) and a cusp
form, cf. Theorem 8.2.1 (iii). We showed in Theorem 8.3.1 that there are no toroidal
cusp forms, sof could only beE(- .| [*/2'"?) (Theorem 3.6.3). We come back to this
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case in a moment, but remark that this compatible with the Riemann hypothesis since
0e[-29"2,24"/?].

Let nowA # 0 andw : CI X — {41} be a character such that = w(z)A for every
placez of degreel. If w is not trivial on CP X, then|A| = (¢ + 1) ¢ [-2¢"/2,2¢"/?].
We determine the automorphic forms that admit such eigenvaluesy £eb | |'/2. The
eigenvalues.;(y) of R( -, y) satisfy

A:(0) = ¢ (w(2)g"? +w(z)g7V?) = w(z)(g+1)
and if we puty s = | "/, then the eigenvalues, (y y /) of R( -, xx ) satisfy
() = ¢V (0@) |2 MgV 4 w(2) |7 M g7V = —w(z) g+ 1),

Since there are only two possibilities for a sign, the eigenvalyes..., A, determine
exactly those two functions (up to a multiple). These residues are infé¢oroidal
(Theorem 8.3.6), but we excluded them to be toroidal (Theorem 8.3.11), so this case does
not obstruct the condition thate [—2¢'/2,2¢"/2] for all A such that there is & € AX,
with @, (f) =Af.

If, however, o is trivial, thenAy, =--- = Ay, = £(¢ + 1 —h). Since residues of
Eisenstein series have eigenvalueg; + 1), we only have to look for Eisenstein series
E(-,y)suchthat;(x) = A, forall z € X(F,). Firstleth # g +1. ThenZZeX(Fq) A, =
h(g +1—h) # 0, and Proposition 3.7.9 implies that we only have to consider quasi-
characterg of the form| |*. Hence we search for solutions of

ql/z(qs-kq*s):j:(q-l-l—h) <~ qizszf:(h—(q-l—l))qil/zis—kl=O.
With the substitutiod” = ¢~(/2+9) this can be rewritten as
@T*+ (h—(q+D)T+1) (gT>—(h—(@+D)T+1) = 0.

Note that by Theorem 6.2.3 we can conclude that the left hand side of the equation is a
multiple of {¢/(1/2 4 s) without making use of the explicit form dfg,. Thus for every
zeros, of ¢/, the complex numbeF ~(1/2+50) is a solution to that equation.

If h =gq + 1, then we are in the exceptional case that =--- = A,, =0, and the
only Eisenstein series with these eigenvalues(is, | |’“/2'“") (up to a multiple). We saw
in Theorem 8.3.6, that this is precisely the case where a derivative of an Eisenstein series
occurs, which substitutes the missing second solution.

8.4.7 The equatiori.? = (¢ + 1—h)? implies that\ € R. By Corollary 6.6.6, the question

if we can deduce the Riemann-hypothesis for curves of gemwer a finite field depends

on whetherl = +(q + 1 —h) € [-2¢'/2,2¢"/?]. In explicit cases, this is easy to check,

but the general statement is an immediate corollary of Hasse’s theorem, i.e. the Riemann
hypothesis for elliptic function fields ([55, Prop. 5.11]).

Since our method to study the toroidal conditions relies on the structure of the graphs
of Hecke operators, and this in turn depends on the class number, it should come as no
surprise that we find that eigenvalue estimates become equivalent to class number esti-
mates. This does appear to imply that our method of computifjgcannot be used to
give an alternative proof of Hasse’s theorem. Nevertheless, we show the connection be-
tween different estimations far, unitarizability and the possible solutions to the equation
q'%(q° +q7%) = £(g+1—h).
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e (The trivial estimate & > 0)
This in general doesot imply that A7, is unitarizable, cf. Lemma 6.6.4. The
solutionss for varyingh > 0—considered as a complex number modﬁ.ﬁ%‘)—are
drawn as the solid line in the picture:

27i
Ing

mo
Ing :

The circles on the solid lines indicate the values of thosech thaiy!/2(¢* + ¢ ~*)
is the eigenvalue of a residuum of an Eisenstein series, which occur as a solution to
the equatiory'/2(¢* +¢~*) = £(¢+ 1—h) ifand only if h = 0 or h = 2q + 2.

e (The estimate0 < h < 24 + 2 given by embeddingX into P?)
This estimate follows from the following. Every curve of genuss given by a
Weierstrass equation of the form

Y?+a XY +asY = X’ +a,X*+asX +ae.

For every value foiX, there are at most two solutions¥nand there is an additional
point at infinity. Hence the numbérof F,-rational points ofY satisfies the estimate
0<h<2g+2.

By Lemma 6.6.4 and paragraph 6.7.4, this estimate is equivalent to the fact that
every irreducible subquotient ef7, is aunitarizable representation. The possible
values fors are drawn as the solid line in the picture:

27i
Ing
.................... o O s
T :
Ing .
o o
0 : :
.................... o O c v
0 : 1

e (The estimateq +1—2¢'/% <h < g +1+24"/? from Hasse’s theorem)
The step from the previous estimate to this estimate is precisely what Hasse proved
in [29]. The estimate is equivalent to the fact that every irreducible subquotient of
A, is atempered representation (Lemma 6.6.3). The possible values fare
drawn as the solid line in the picture:
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8.4.8 (Concluding remark) The calculations that lead to the conclusion thas a real
number only involve the geometric interpretation of one toroidal condition and enough
knowledge about the graphs of Hecke operators. We neither make use of the explicit form
of the zeta function nor of our knowledge of the structure of the space of automorphic
forms. This already shows a certain strength of the theory.

An estimate of the class number, which only uses the fact that every elliptic curve
has a Weierstrass equation, restricts the zeros of the zeta function to the possibilities that
correspond to unitarizable representations. This is the result whose analo@ue/éarid
imply the validity of the Riemann hypothesis.









Samenvatting

Klassieke automorfe vormen

Alvorens het begrip automorfe vorm voor functielichamen over een eindig lichaam in te
voeren, zullen we in de eerste paragraaf eerst de klassieke notie van automorfe vorm her-
halen. Voor de experts: in deze inleiding beperken we ons tot onvertakte automorfe vor-
men, en zullen dat niet steeds herhalen. Tenslotte merken we op dat de notatie in deze
samenvatting niet volledig in overeenstemming is met die in de hoofdtekst.

ZijH={x+iy € C|x,y € R,y > 0} het complexe bovenhalfviak van Poincaré en
SL, Z de group van geheeltallige twee-bij-twee matrices met determinabéeze group
werkt als groep van isometrieén voor de Poincaré-metrield agoor Mébiustransfor-

maties als volgt:
a b . az+b
c d|” T cz+d’

Afbeelding 1 laat een fundamentaaldomein zien voor deze actie, alsook de bijbehorende
quotiéntafbeelding. Op de gladde complexwaardige functies operkt de Laplace-

Beltrami-operato\ = —yz((,;l—22 + i)"’y—zz)
Een gladde functi¢ : H — C wordtautomorfe vorngenoemt alsf’ voldoet aan
e f isinvariant onder de actie van $¥: f(y.z) = f(z) voor alley € SL, Z;
e £ isvan polynomiale groei: er bestaat eea N zodat f(iy) € O(|y|");
e fis A-eindig: {A’ f'};>o brengt een eindig-dimensionale vectorruimte voort.

De ruimte van automorfe vormen wordt genoteerdAds

De Poincaré-metriek staat in een nauw verband met de Laplace-Beltrami-operator. Zij
z € H enSc(z) de richtingsruimte van. Zij z; het unieke element op afstandvan z
op een geodetische halflijn met beginparén aanvangsrichtinge Sc(z). Dan is er een
meromorfe functie : C — C zodat voor elke gladde eigenfuncife H — C vanA (d.w.z.
A f = Af voor een € C) geldt dat

(@) = c(h) / Fz)ds .
Se(2)

143
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Voor het begrip van de volgende paragrafen is het niet strikt noodzakelijk om te weten
wat adeles zijn, maar we beschrijven wel even kort de omformulering van het quotiént
SL, Z\ H in de taal van adele&q overQ (voor een definitie zie 1.1.3). Z{ het centrum
van G, enKq = 0, x [[GL, Z,, waarbijO, de orthogonale group in GI(R) is, Z,, de
p-adische getallen zijn en het product over alle priemgetallen loopt. Als gevolg van sterke
approximatie voolSL, bestaat er dan een homeomorfisme

SLLZ\H = GL,QZ(Ag)\ GL,Ao/ Ko.

Automorfe vormen voor functielichamen

Zij F, het lichaam met; elementen. Er bestaat een sterke analogie tu@sen het ra-
tionale functielichaanf = F,(¢), d.w.z. het breukenlichaam van de ring van veeltermen
overF,. Met name bestaat er het volgende woordenboek:

Q F =F,(t)

Z OF = Fylt]

N | loo : P/ Q > qie9Q—deaP

R Foo =Fg (™))

n.v.t. Oco = Fy[lt71]]

H T©) = GLy Foo / Z(Fso) GLy O
SL,Z GL,Of

Ao A=Ap

Ko K (zie 1.3.1)

Ook in het geval van een functielichaam impliceert sterke approximatie vogrh8t
bestaan van een homeomorfisme

GL,Op\T© ~ GL, FZ(A)\ GL,A/K,

waarbij7 (© als discrete verzameling bekeken wordt. Onf@é® uit rechts-nevenklassen
van matrices bestaat, is er een natuurlijke werking vap ¢t door links-vermenigvuldigen
van matrices.

Een functief : 7 — C wordt automorfe vorm genoemd af&y.g) = f(g) voor
alley € GL, O enereem € Nis zodatf (% 2)) € O(|¢'|" ). De ruimte van automorfe
vormen wordt met4 genoteerd.

De rol van de Laplace-Beltrami-operatdrwordt in de wereld van functielichamen
overgenomen door de Hecke-operatogedefineerd door

(1) = 1((5,%)5) +beZqu (3 D))
=!gco =&p



Samenvatting 145

H RS T
REaE
SN
i e
ENR
S
mod SL,Z mod GL; O

GL, Or\T
g+1 g 1 g 1 qg 1
° ® ® ——
Cco C1 (60 c3 )
spits

Afbeelding 1: Het bovenhalfvlak van Poincaré  Afbeelding 2: De Bruhat-Tits-boom

voor f € Aeng € T, Geldtdf = Af voor eenk € C, dan volgt uit de definitie vad
dat

M@=l[ﬂmm

PL(Fy)

alsP!(F,) = F, U {oo} van de discrete maat voorzien wordt. Door deze formule te ver-
gelijken met de corresponderende klassieke integraal wordt duidelijig,ddé punten
‘op afstandl’ van g moeten zijn. Dit wordt gerealiseerd door een graaflie 7© als
knooppunten heeft, waarin precies met de knooppuntgn door een tak is verbonden.
Deze graaf wordt ook de Bruhat-Tits-boom van B@L, genoemd en is inderdaad een
boom. De actie van GLOr heeft een natuurlijke voortzetting op de boom.

Afbeelding 2 laat de analogie met het bovenhalfvlak van Poincaré zien. In de quotiéntaf-
beelding van de boom geven de getallen naast een knooppunt aan hoeveel takken uit de
boom erop worden afgebeeld. Verderis GL, O \ T© de klasse van de matr{x; 9).
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Bewijs van de Riemannhypothese vooF

De zetafunctie vooF wordt gedefineerd door de formule

1 1
;F(s) = l_q—s ) l_[ l_q—s~degP

PeOF
monisch and irreducibel

als Res > 1. De eerste faktor in het product komt overeen met de gamma-factor voor
de Riemann zetafunctie. Ook voor eindige lichaamuitbreidingeran F', zogenoemde
globale functielichamernis een zetafuncti€z op een vergelijkbare manier gedefinieerd.
Voor deze zetafuncties is de Riemannhypothese bewezen, d.w.z. dat alle nulpuritgn van
reéel deel /2 hebben. VooIF een rationaal functielichaam is zelfs de constante functie
1, maar de zetafunctie van een algemeen globaal functielichaam heeft wel nulpunten en
voor deze is de geldigheid van de Riemannhypothese een diepe stelling van Hasse en Weil.
Een stelling van Erich Hecke geeft een verband tussen zetafuncties en een integraal
over Eisensteinreeksen als functies op het bovenhalfvlak van Poincaré. De adelische ver-
taling geldt ook voor globale functielichamen:

Stelling (Hecke, 1959).Voor elkeg € GL, Ag en elke overE gedefinieerde maximale
anisotrope torug” C GL, bestaat een holomorfe functig , : C—{0,1} — C zodat voor
elkes e C—{0,1},

E(s)(1g)dt = erg(s)-{r(s+1/2)
T(F)Z(A\T(A)

geldt waarbij E (s) de Eisensteinreeks van gewighis.

Deze formulering stamt uit een artikel van Don Zagier uit 1979, die verder opmerkte
dat voor elk nulpunt + 1/2 van de zetafunctie bovenstaande integraal van de Eisenstein-
reeks van gewicht onafhankelijk vanT" en g verdwijnt. Hij concludeerde dat de Rie-
mannhypothese vodt volgt als de ruimtes,, van automorfe vormen waarvoor boven-
staande integraal voor ellké en g verdwijnt een getemperde voorstelling is. Hij noemde
de automorfe vormen in deze ruintteoidaal

Hiermee komen we nu aan bij de inhoud van dit proefschrift. We bestuderen ruimten
van toroidale automorfe vormen voor functie lichamen.

We illustreren eerst onze methode met het het ‘triviale’ geval van een rationaal func-
tielichaamF = F,(¢).

Allereerst merken we op dat, invariant is onder de actie van Hecke-operatoren.

Door de interpretatie vafi ) als verzameling van isomorfieklassen van rang-twee
vectorbundels over de projectieve lijn ogy en door de interpretatie van een van de tori
als sporen van lijnbundels over de projectieve lijn ogr kan de integraal in dit geval
berekend worden als som van functiewaarden in de hoekpunten van het quotiént van de
boom. Op die manier kunnen we aantonen datfaks A, dan f(co) = 0, bekeken als
functie op G, O \ 7.

Nu is genoeg bekend om een nieuwe bewijs voor de Riemannhypotheséxvoer
geven. Alhoewel het hier een soort “met een kanon op een mug schieten” betreft, is het
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opmerkelijke van dit bewijs dat het geen gebruik maakt van de expliciete vorm van de
zetafunctie.

Stelling. De ruimte van toroidale automorfe vormen voor een rationaal functielichaam is
triviaal: #Awr = {0}. Bijgevolg heeftr geen nulpunten.

Bewijs.Het tweede deel van de stelling volgt uit het eerste deel door gebruik te maken
van de stelling van Hecke. Voor het bewijs van het eerste deef: iAo, dus f(co) = 0.
Dan zijn ook alled’ ( 1) toroidaal, dusb’ ( f)(co) = 0. Uit de gewichten van GLOr \ T
kan men deze termen berekenen en inductief de conclusie trekken dat

0= d(f)co) = (g+1)f(c1) = f(c1)=0
0 = ®*(f)(co) = (g+1)f(c2) +q(g+1)[(co) = f(c2)=0
0 = ®(f)(co) = (g+1)f(c;)+“lagere termen” = f(c)=0

Dus moetf de nulfunctie zijn. o

Bovenstaande theorie werkt niet alleen védgrmaar voor elk globaal functielichaam
E. In het hoofddeel van dit proefschrift wordt de ruimte van toroidale automorfe vormen
voor een dergelijk algemeen functielichadmonderzocht. Alsg het geslacht e het
klassengetal vaR zijn enk de dimensie van de ruimte van spitsenvormen is, dan bewijzen
we de afschatting

g+(h—1D(g—1) < dims, < 2g+2(h—1)(g—1) +k.
Voor het bewijs wordt eerst een algemene theorie van ‘grafen van Hecke-operatoren’ ont-
wikkeld, die de theorie van Serre over het quotiént van de Bruhat-Tits-boom veralge-
meniseert. Vervolgens wordt gebruik gemaakt van de interpretatie van de hoekpunten
van de boom als isomorfiekassen van rang-twee vectorbundels op de kromme Kie bij
hoort, om een structuurtheorie voor deze grafen op te stellen.

In het geval van een elliptisch functielichaaiin(d.w.z.g = 1 en E heeft een plaats
van graad 1) tonen we aan dat de ruimte van toroidale automorfe vormen precies van
dimensie 1 is, en wordt opgespannen door een Eisensteinreeks van gewicht een nulpunt
van de zetafunctie vaf (het bewijs werkt nietalg =2 enh =¢g +1).

We leiden ook uit werk van Hasse, Weil en Drinfeld af dat de irreducibele quotién-
ten van de voorstellingsruimte van toroidale vormen getemperd zijn. Momenteel is niet
duidelijk hoe omgekeerd de stelling van Hasse en Weil (equivalent van de Riemannhy-
pothese voolE) kan worden afgeleid uit de hier ontwikkelde algemene theorie van toroi-
dale automorfe vormen.






Zusammenfassung

,Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.“
Leopold Kronecker, 1886

Zahlentheorie

Kroneckers Ausspruch war ein Bekenntnis zum mathematischen Konstruktivismus ([75,
S. 19]) — er wollte die Mathematik auf die Arithmetik der ganzen Zahlen zurtickfuhren, alle
mathematischen Aussagen sollten in endlich vielen logischen Schliissen nachvollziehbar
sein. Obwohl heutzutage der Beweis durch Widerspruch in der Mathematik weitgehend
akzeptiert ist und die Frage, ob ein solcher Beweis durch eine Konstruktion ersetzt werden
kann, als eine philosophische betrachtet wird, ndhren die Probleme um die Arithmetik der
ganzen Zahlen einen bliihenden Zweig der Mathematik: die Zahlentheorie.

Um den Keim der Komplexitat in der Arithmetik aufzuspiren, lohnt es sich einen
Schritt zurtick zu tun und nur die positiven ganzen Zahlen

1,2,3,4,5,6,7, ...

zu betrachten. Diese sind mit zwei natirlichen Operationen ausgestattet: Der Addition und
der Multiplikation. Bezlglich der Addition hat jede positive ganze Zablne eindeutige
Darstellung als Summe von Einsen:

n-mal
Die Bausteine der Multiplikation sind Primzahlen
2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,...,

die dadurch charakterisiert sind, daf3 sie ungldidind und nur durch und sich selbst
teilbar sind. Jede positive ganze Zahbesitzt eine eindeutige Primfaktorzerlegung, was
bedeutet, daf? es eine Darstellung woals Produkt
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von Primzahlerp,,..., p, gibt, welche bis auf Reihenfolge eindeutig bestimmt sind. Die
Menge aller erdenklichen Kombinationen von Produkten von Primzahlen

2, 3, 2.2, 5, 23, 7 2.2.2 3.3 2.5 11,

entspricht genau der Menge der positiven ganzen Zahlen. Multiplikation ist somit in nur
einem Aspekt komplizierter als Addition: Anstatt eines Bausteins gibt es unendlich viele.

Der Ursprung der Arithmetik liegt in der Kombination von Addition und Multipli-
kation, die es erlaubt, Fragen unbegrenzter Schwierigkeit zu stellen, und deren Gesetz-
maRigkeiten von beliebiger Tiefe scheinen. Soweit die altesten Aufzeichnungen zuriick-
reichen, gibt es Zahlenmystiker, die arithmetische Gleichungen wie

2341 = 32, 32442 =52 oder 122413 = 103+ 9%,

finden und Zahlentheoretiker, die die Strukturen solcher Gleichungen untersuchen. Ein
Beispiel bilden die Gleichungen der Form

1424...4m = 12422 +.. . +n?

fur positive ganze Zahlem undn. Ausprobieren (im Zweifel mit Hilfe eines Computers)
liefert die Losungen

m=1lundn=1, m=10undn =5, m=13undn =6, m = 645undn = 85.

Tatsachlich sind dies bereits alle Lésungen. Der Beweis ([40]) fuhrt allerdings Gber den
Rahmen dieser Zusammenfassung hinaus. Fir eine popularwissenschaftliche Darstellung
siehe [14].

Die Riemannschen Vermutung

Seis grol3er ald, dann ndhern sich die unendliche Summe

1 1 1 1
Tty tatoto+
(n durchlauft hier alle positiven ganzen Zahlen) und das unendliche Produkt
1 1 1 1
1_%.1_%.1_%..... _%....

(p durchlauft hier alle Primzahlen) einem wohlbestimmten Wert an in dem Sinne, wie sich
0,99999... der Zahll annahert, und dieser Wert ist fiir beide Ausdriicke derselbe. Dies
folgt im Wesentlichen aus der eindeutigen Primfaktorzerlegung.

Die Riemannsche Zetafunktion ist eine ,meromorphe“ Funktion von den ,kom-
plexen“ Zahlen in die komplexen Zahlen, welche fiir komplexe Zak|)eleren ,Realteil”
groéRer ald ist, den soeben beschriebenen Wert annimmt. Die sogenannten trivialen Null-
stellen sind Nullstellen von in allen geraden negativen ganzen Zahlen. Die Riemannsche
Vermutung besagt, dal3 alle weiteren Nullstellen Rea%téiaben.
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Die Riemannsche Vermutung wurde von Bernard Riemann ([54]) im Jahre 1859 for-
muliert. lhre Giltigkeit wirde die erstaunlich regelméaRige Verteilung von Primzahlen in
den natirlichen Zahlen erklaren (siehe Abschnitt 6.5). Sie hat zahlreiche Umformulierun-
gen, Folgerungen und implizierende Bedingungen in verschiedensten Gebieten der Math-
ematik gefunden, ihre Gultigkeit ist aber bis heute eine offene Frage.

Die ganzen Zahlen bilden nicht den einzigen Zahlenbereich, der fir die Zahlentheorie
interessant ist, sondern es gibt eine Vielfalt anderer Zahlenbereiche, die mit einer Addi-
tion und einer Multiplikation ausgestattet sind und deren arithmetische Eigenschaften eine
weitreichende Ahnlichkeit mit denen der ganzen Zahlen aufweisen. So lassen sich auch
fur gewisse Zahlenbereiche Zetafunktionen definieren und eine Riemannsche Vermutung
formulieren.

So tief die Gultigkeit der Riemannschen Vermutung mit der Arithmetik des Zahlenbe-
reichs verwoben ist, so vielféltig sind die Herangehensweisen an einen Beweis. Wie oben
erwahnt, hatte allerdings noch keine Methode Erfolg im Fall der Riemannschen Zetafunk-
tion ¢. In dieser Doktorarbeit wird ein Ansatz verfolgt, der Ende der siebziger Jahre durch
Don Zagier formuliert wurde. Im Falle einiger Zahlenbereiche, fir die die Riemannsche
Vermutung schon gezeigt wurde, gelingt ein neuer Beweis.

Graphen

Die mathematischen Konzepte und Methoden, die sich um arithmetische Fragen ranken,
sind oft von hoher Abstraktheit, da sich gewisse Gesetze der Arithmetik einer naiven
Betrachtungsweise verschlieBen. Zur besseren Handhabung abstrakter Begriffe werden
ihnen oft einfachere Objekte zugeordnet, die sich darauf beschrénken, die entscheidenden
Eigenschaften fur den jeweiligen Zweck widerzuspiegeln. In einigen Situationen reicht es
aus, dem abstrakten Begriff eine Zahl oder eine Reihe von Zahlen zuzuordnen, in anderen
ist es notig, mehr Charakteristika zu wahren.

Beliebte Kandidaten mit mehr Mdglichkeiten sind sogenannte Graphen. Ein Graph
besteht im Wesentlichen aus einer Menge von Punkten, sogenannten Knoten, und einer
Menge von Verbindungslinien zwischen diesen Knoten, sogenannten Kanten. Ein Grund
fur ihre Beliebtheit ist die Moglichkeit, sie auf ein Stlick Papier zu zeichnen.

Je nach Bedarf werden die Knoten und Kanten mit gewissen Dekorationen versehen:
Sie werden eingefarbt, gerichtet und gewichtet oder es werden ihnen selbst wieder ab-
strakte Objekte zugeordnet. In der Literatur finden sich Cayleygraphen, Kinderzeichnun-
gen, Feynmangraphen und Bruhat-Tits-B&aume als Vereinfachung komplizierter Objekte.

In Kapitel 4 dieser Arbeit wird der Graph eines Heckeoperators eingefiihrt. Dieser
ist im ,unverzweigten” Fall, der in dieser Arbeit fast ausschlief3lich betrachtet wird, ein
Graph, dessen Kanten zwei Zahlen dekorieren, eine an jedem Ende der Kante. Der ein-
fachste Graph eines Heckeoperatoren, der vorkommt, sieht wie folgt aus:

3 2 1 2 1 2 1

Der Graph hat unendlich viele Knoten und Kanten, setzt sich aber nach rechts vollkommen
regelmaRig fort. Die Zahlen kodieren die Wirkung des betrachteten Heckeoperators auf
eine Weise, die im folgenden Abschnitt demonstriert werden soll.
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Beweis der Riemannschen Vermutung in einem Beispiel

In diesem Abschnitt wird der Beweis der Riemannschen Vermutung nach der in dieser Ar-
beit benutzten Methode am Beispiel des ZahlenbereiEbg], demonstriert. Der Graph
eines gewissen Heckeoperators, der @énibezeichnet werden soll, ist der im vorherigen
Abschnitt vorgestellte. Der Handhabbarkeit halber indizieren wir die Knotenymif, c»

und so weiter:

3 2 1 2 1 2 1

€0 C1 2 3

Es werden ein paar mathematische Begriffe benétigt, die auf moglichst einfache Weise
eingefihrt werden.

Eine automorphe Fornist eine Vorschriftf, die jedem Knoter; des Graphen eine
komplexe Zahlf(c;) zuordnet und die eine gewisse Wachstumsbedingung erfullt, die je-
doch fur den weiteren Beweis ohne Bedeutung ist und auf die deswegen nicht weiter einge-
gangen werden soll.

Der Heckeoperato® bildet eine automorphe Fornfi auf die automorphe Forng™*
ab, die sich dadurch definiert, dafld

f(co) = 3 fler), 1)
fH(er) = 1- f(c2) +2- f(co), ()
f*(c2) = 1-f(c3)+2- f(c1) und so weiter 3)

gilt. Genau diese Gleichungen werden durch die Kanten und ihre Zahlen im obigen
Graphen dargestellt.

Don Zagier definierte in einer Arbeit von 1979, unter welchen Bedingungen eine au-
tomorphe Forntoroidal heif3t. Fir diesen Beweis ist interessant, daf3 eine toroidale auto-
morphe Formf* zwei Eigenschaften haif(co) = 0, und f* ist toroidal.

Der Zusammenhang mit der Zetafunktiofk,;“ von F;[t] wird durch eine Formel
von Erich Hecke von 1959 gegeben. Diese Formel impliziert, daf3 es zu jeder Nullstelle
von g, [, eine toroidale automorphe Foryfi gibt, die mindestens einem Knotep eine
Zahl f(cy,) ungleich0 zuordnet.

Die folgende Uberlegung zeigt, daf es keine solche toroidale automorphe Form geben
kann. Daraus folgt, daf,[;) keine Nullstelle haben kann und somit die Riemannsche
Vermutung furk, [¢] gilt.

Sei alsof eine toroidale automorphe Form. Dann f&t) = 0, und f*, definiert wie
oben, ist toroidal. Folglich gilt aucli*(co) = 0 und — zufolge Gleichung (1) #(c{) = 0.

Zusammenfassend wurde im letzten Absatz fur eine toroidale automorphe fForm
bewiesen, daf nebef(co) = 0 auch f(c;) = 0 gilt. Da auchf* toroidal ist, gilt ebenso
f*(c1) = 0. Aus Gleichung (2) folgt nun, daf(cz) = 0 ist.

Das Argument aus dem vorherigen Absatz laf3t sich beliebig oft wiederholen, und
somit gilt fr jede positive Zaht, dal3 f(c,) = 0. Damit ist die Riemansche Vermutung
fur F,[¢] bewiesen.
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