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Introduction

Motivation

At the Bombay Colloquium in January 1979, Don Zagier ([83]) observed that if the kernel
of certain operators on automorphic forms turns out to be a unitarizable representation, a
formula of Hecke implies the Riemann hypothesis. Zagier called elements of this kernel
toroidal automorphic forms.

In the language of adeles, an automorphic formf on PGL2.Q/n PGL2.A/, whereA
denote the adeles ofQ, is toroidal if for all maximal anisotropic toriT in GL2 that are
defined overQ and allg 2 PGL2.A/, Z

eT .Q/neT .A/ f .tg/dt (1)

vanishes, whereeT denotes the image ofT in PGL2. From its definition, the spaceAtor of
toroidal automorphic forms is an automorphic representation of PGL2.A/ by right transla-
tion of the argument. Iff is an Eisenstein seriesE.s/, the integral (1) equals the product
of the completed zeta function��.sC 1=2/ (including the gamma factor) and a function
that depends nontrivially ong. (Note that in the original paper, Zagier used a different
normalisation of the weights of the Eisenstein series than we do.) Consequently, for ev-
ery zerosC 1=2 of ��, i.e. for every nontrivial zero of the Riemann zeta function, the
Eisenstein seriesE.s/ is toroidal. On the other hand,E.s/ spans a unitary representation
of PGL2.A/ if and only if sC 1=2 2 .0;1/ or Re.sC 1=2/ D 1=2. Since� has no zeros
on the interval.0;1/, cf. [66, Formula (2.12.4)], the Riemann hypothesis follows ifAtor

is a unitarizable representation. Indeed, it suffices to find a PGL2.A/-invariant hermitian
product on the subspace of unramified vectors, since the Eisenstein series in question are
unramified automorphic forms.

We briefly review consecutive developments. The monumental work of Waldspurger
on the Shimura correspondence ([69], [70], [71] and [72]) includes a formula connecting
toroidal integrals of cusp forms (nowadays also called Waldspurger periods) with the value
of theL-function of the corresponding cuspidal representation at1=2. In [80] and [81]
Franck Wielonsky worked out Zagier’s ideas and obtained a generalisation to a limited
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8 Introduction

class of Eisenstein series on PGLn.A/. Lachaud tied up the spaces with Connes’ view
on the zeta function, cf. [34] and [35]. Clozel and Ullmo ([12]) used both Waldspurger’s
and Zagier’s works to prove a equidistribution result for tori in GL2, and Lysenko ([44])
translated certain Waldspurger periods into geometric language. Finally, [15] contains
easy proofs of the Theorems A, C and D below, when restricted to global function fields
of genus less than or equal to1 whose class number is1.

Results

On the last page of his paper [83], Zagier asks what happens ifQ is replaced by a global
function field. He remarks that the space of unramified toroidal automorphic forms can
be expected to be finite dimensional since the zeta function is essentially a polynomial,
which marks a difference to the case of number fields. This forms the starting point for the
present thesis.

Let F denote a global function field of genusg and class numberh. Define an au-
tomorphic form on PGL2F to be toroidal if the literal translation forQ to F holds. The
main results are:

Theorem A. The space of unramified toroidal automorphic forms is finite dimensional.

Theorem B. The dimension of the space of unramified toroidal automorphic forms is at
least.gF �1/hF C1.

Theorem C. There are no nontrivial unramified toroidal automorphic forms for rational
function fields.

Theorem D. Let F be the function field of an elliptic curve over a finite field withq
elements, andsC 1=2 a zero of the zeta function ofF . If the characteristic is not2
or h ¤ qC 1, the space of unramified toroidal automorphic forms is1-dimensional and
spanned by the Eisenstein series of weights.

Theorem E. The irreducible unramified subquotients of the representation space of toroi-
dal automorphic forms are unitarizable, and do not contain a complementary series.

These are Theorems 6.1.8, 6.2.14, 6.1.10, 8.3.11 and 6.7.5, respectively. The main
ingredient of the proofs of Theorems A, C and D is the theory of graphs of Hecke operators
as it will be developed in this thesis. It can be seen as a global variant of the quotients of
Bruhat-Tits trees by arithmetic subgroups as considered by Serre in [60, II.2]. Theorem
B is a consequence of Zagier’s paper using the theory of Eisenstein series and class field
theory.

The proof of Theorem E makes use of the proof of the Ramanujan-Petersson conjecture
for GL2 ([17]) and the Hasse-Weil theorem ([76]), which is the analogue of the Riemann
hypothesis for global function fields. For the function field of an elliptic curve it is possible
to prove unitarizability without making use of the Hasse-Weil theorem, but this does not
imply the Riemann hypothesis (section 8.4).
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Conjectures

The work of Waldspurger for number fields, cf. [71] and [72], and a theory of double
Dirichlet series of Fisher and Friedberg, cf. [18] and [19], lead to Conjectures 6.2.15 and
6.4.3, which can be combined to

Conjecture A. Let r be the number of isomorphism classes of irreducible unramified
cuspidal representations whoseL-function vanishes at1=2. Then the dimension of the
space of unramified toroidal automorphic forms equals.g�1/hC1C r .

Tentative calculations for ramified representations show that the subspace of toroidal
automorphic forms with certain fixed ramification type has a finite decomposition series.
There are technical obstructions to proving this in general. Nevertheless it suggests Con-
jecture 6.1.15, which is

Conjecture B. The space of all toroidal automorphic forms is admissible.

Leitfaden

1
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Content overview

The present thesis intends to be comprehensible to a reader with a basic knowledge of
number theory and algebraic geometry. To realise this goal, it is necessary to give short
introductions to various topics adapted to the purposes of the thesis, namely, to certain
aspects from the theory of automorphic forms as well as parts from the theory of vector
bundles on curves. The philosophy in these introductory parts is that they contain proofs
where they are short and instructive or missing from the existing literature, and provide
a reference otherwise. As known theory is interwoven with new results, the following
overview tries to disentangle the knot.

CHAPTER 1 defines the context of this thesis and gives short introductions to adelic
groups, automorphic forms and the Hecke algebra. The last section introduces the object
of investigation, the space of toroidal automorphic forms. In particular, there is a definition
for split tori that will reproduce the results that Zagier obtained in [83] in classical language
for Q.

CHAPTER 2 sketches the theory of L-series and Eisenstein series and puts some em-
phasis on derivatives, which play an important role in the representation theory of toroidal
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automorphic forms.
CHAPTER 3 inspects unramified admissible representations and their decomposition

series. It further provides results for detecting unramified automorphic forms by their
eigenvalues under Hecke operators.

CHAPTER 4 introduces the new notion of the graph of a Hecke operator. Examples
for rational function fields are accessible by elementary matrix manipulations. Further
investigations for general function fields will be done only for generators of the unramified
part of the Hecke algebra. The structure of the graphs of these operators inherits many
properties from local coverings with Bruhat-Tits trees.

CHAPTER 5 describes the well-known geometric interpretation of automorphic forms
as functions on vector bundles and the meaning of Hecke operators in this context. This
enables methods from algebraic geometry and in particular reduction theory for vector
bundles to enter the investigation of graphs of Hecke operators. Namely, the graph is a
union of finitely many half lines, called cusps, that are connected by a finite graph, called
the nucleus. The cusps are of simple nature and it is the nucleus that encodes arithmetic
information aboutF . Finally, we will reinterpret automorphic forms as functions on the
vertices.

CHAPTER 6 uses the theory developed in the previous chapters to prove Theorems A
and C. Theorem A further implies that the space of unramified toroidal automorphic forms
decomposes into three parts, which are, roughly speaking, Eisenstein series, residues of
Eisenstein series and cusp forms. Zagier’s calculation (applied to the first part) proves
Theorem B. Applied to the second, it shows that there are no toroidal residues of Eisenstein
series. The question of toroidal cusp forms in general can be answered if Waldspurger’s
work is translated to global function fields. The last sections discuss the history of the
Riemann hypothesis and its connections to toroidal automorphic forms. In particular the
proof of the Riemann hypothesis for global function fields implies Theorem E.

CHAPTER 7 determines the structure of graphs of certain Hecke operators for func-
tion fields of an elliptic curve. This is done by completely geometric methods using the
classification of vector bundles on elliptic curves by Atiyah.

CHAPTER 8 applies the graphs of the previous chapter to prove Theorem D. It further
contains new proofs of some particular results, such as a dimension formula for the space
of unramified cusp forms, and unitarizability results for unramified toroidal automorphic
forms that can be proven without making use of the Hasse-Weil theorem.



CHAPTER 1

Definitions and Preliminaries

This chapter recalls relevant notions and facts from the theory of adeles, al-
gebraic groups and automorphic forms. It is not meant to give a complete
treatment, but rather discusses the viewpoint of this thesis and settles notation.
References will help to find missing facts in the literature. The last section
introduces toroidal automorphic forms, the main object of study.

1.1 Notation

As reference for this section, consider [49], [55] or [79].

1.1.1 Let N be the natural numbers,Z the integers,Q the rationals,R the reals andC the
complex numbers together with the usual absolute valuej jC and the usual topology. Fix
a fieldFq with q elements and letF be a global function field with constant fieldFq , i.e.
F=Fq is a field extension of transcendence degree1whose elements of finite multiplicative
order are contained inFq .

1.1.2 A placeis an equivalence class of nontrivial valuations ofF . Let jX j denote the set
of all places. For the rest of this paragraph, fixx 2 jX j. Let Fx be the completion ofF
at x. Choose a uniformiser�x 2 F . ThenFx is isomorphic to the field of Laurent series
Fqx

..�x// in �x over Fqx
, whereqx D qdegx for some positive integer degx, which is

called the degree ofx. Let Ox be the ring of integers ofFx , which is isomorphic to the
ring of formal power seriesFqx

ŒŒ�x ��. Further letmx D �xOx be its maximal ideal and
�x DOx =mx ' Fqx

its residue field. The fieldFx comes with a valuationvx that satisfies
vx.�x/D 1 and an absolute valuej jx D q

�vx
x , which satisfiesj�xj D q�1

x .

1.1.3 For every finite subsetS � jX j, defineAS as
Q
x2S Fx �

Q
x…S Ox . WhenS D ;,

we also writeOA for A;. The family of all finite subsets ofjX j together with inclusions
forms a direct system, and the colimit, or union,A D AF D

S
AS over this system is

called theadele ringof F . In other words,A is the subring of
Q
x2jX jFx consisting of

all elements.ax/ such that for all but finitely manyx 2 jX j, vx.ax/ � 0. The canonical
injections to the full product restrict toFx ! A, and the canonical projections restricted
to A! Fx are still surjective.

1.1.4 The idele groupA� is the group of invertible adeles. An idelea D .ax/ is char-
acterised by the vanishing ofvx.ax/ for all but finitely many placesx. The degree

11



12 Definitions and Preliminaries CHAPTER 1

degaD
P
x2jX j degx �vx.ax/ and the normjaj D

Q
x2jX j jaxjx of an idele are thus well-

defined functions. Denote byA�
0 the ideles of degree0, or equivalently, of norm1.

1.1.5 A divisorof F is an element

D D .Dx/ 2
M
x2jX j

Z �x ' A� =O�
A

with Dx 2 Z for all x 2 jX j. The latter isomorphism is obtained by sending the divisor
x (for x 2 jX j) to �x , where we interpret�x as idele via the inclusionF � � F �

x � A�.
Define theidele class groupasF � nA� and thedivisor class groupClF asF � nA� =O�

A .
If we write ŒD� 2ClF , then we always mean thatD is a divisor that represents the divisor
classŒD�.

By embedding an elementa 2 F diagonally intoA along the canonical inclusions
F ,! Fx , we may regardF as a subring ofA. The product formula

Q
x2jX j jajx D 1 can

be reformulated asF � � A�
0 . SinceO�

A consists of the idelesa D .ax/ with vx.ax/D 0
for all placesx, alsoO�

A � A�
0 . Thus we can define the the degree of a divisor and divisor

class to be the degree of a representing idele. Theclass groupCl0F D F � nA�
0 =O�

A is
a finite group, whose orderhF is theclass number. More generally, Cld F denotes the
divisor classes of degreed and Cl�d F the divisor classes of degree greater or equal tod .

These groups fit into an exact sequence

0 // Cl0F // ClF
deg // Z // 0 ;

which splits non-canonically, cf. paragraph 2.1.2. For surjectivity of the degree map, cf.
[57, para. 8.2]. In particular, there are always ideles of degree1, even whenF has no place
of degree1.

An prime divisoris a divisor that is represented by�x for some placex and aneffective
divisor is a divisor that is either trivial or the sum of prime divisors.

The definition of a canonical divisor is somewhat more involved and will therefore be
assumed to be known ([79, Ch.VI, Defs. VI.1, VII.4] or [28, p. 295]). Adifferental idele
(terminologysicdue to Weil) is an idele that represents a canonical divisor. All differental
ideles have the same degree. Letc be a fixed differental idele. ThegenusgF ofF satisfies
degcD 2gF �2.

1.2 Adelic topologies

Local fields and adeles come with a natural topology, which turns them into locally com-
pact rings. Hence all algebraic groups over these rings turn into locally compact groups,
which carry a Haar measure. As general reference consider the same books as in the previ-
ous section. For the theory of locally compact groups we suggest the classic by Pontryagin
([51]) and [31].

1.2.1 The topology ofFx is given by the neighbourhood basisf� ixOxgi2N of 0, which
turnsFx into a locally compact field, sinceOx is a compact neighbourhood of0. Remark
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thatFx is totally disconnected and Hausdorff. By its definition as

A D

[
S�jX j

finite

Y
x2S

Fx �
Y
x…S

Ox ;

we can endowA with a canonical topology, in which the subsets above are embedded as
open subspaces carrying the product topology. By Tychonoff’s theorem,OA is compact
as product of compact spaces, and thusA is locally compact, totally disconnected and
Hausdorff.

1.2.2 For every varietyV overFx , i.e. an separable integralFx-scheme of finite type,
the setV.Fx/ has astrong topology, cf. [43]. It is uniquely determined by the properties
that the set ofFx-rational points of the affine line A1.Fx/ is homeomorphic toFx , that
if V D V1 �V2, thenV.Fx/ is homeomorphic toV1.Fx/�V2.Fx/, and that for locally
closed embeddingsV 0 ,! V , the spaceV 0.Fx/ has the subspace topology ofV.Fx/. The
strong topology turnsV.Fx/ into a locally compact, totally disconnected Hausdorff space.

If V is a variety overF that is embedded into affine space, then we can consider
for everyx 2 jX j the OX -rational points ofV and obtain an inclusionV.Ox/ � V.Fx/.
Equipped with the subspace topology,V.Ox/ is compact. DefineV.AS / as

Q
x2S V.Fx/�Q

x…S V.Ox/, andV.A/ as the colimit
S
V.AS / over all finiteS � jX j. The topological

spaceV.A/ does not depend anymore on the embedding into affine space (in contrast to
V.Ox/ andV.AS /). Therefore we can associate to any varietyV overF a natural topo-
logical spaceV.A/, which does not depend on the choice of an atlas. We call the topology
onV.A/ thestrong topology, too. Again,V.OA/D

Q
x2jX j Ox is compact by Tychonoff’s

theorem, and thusV.A/ is locally compact, totally disconnected and Hausdorff.
If V.A/ is not empty but compact, thenV.Fx/ is compact for everyx 2 jX j since

the projection mapsV.A/! V.Fx/ are surjective. The converse implication holds as
well if we consider all finite field extensions. More precisely, we can prove the following
statement along the lines of the proof of [43, Thm. 1.1].

1.2.3 Theorem.LetV be a variety overF andx 2 jX j. Then the following are equivalent.

(i) V is complete.

(ii) V.Ex/ is compact in the strong topology for every finite field extensionEx=Fx .

(iii) V.AE / is compact in the strong topology for every finite field extensionE=F .

1.2.4 If V is an algebraic group overF , then the group law turnsV.A/ into a locally
compact group. A locally compact group has aleft and aright Haar measure, i.e. a non-
trivial measure that is invariant by left or right translations, respectively. Every time that
an algebraic group appears we assume the adelic points to carry a Haar measure. A Haar
measure is unique up to a constant multiple. Rather than fixing the constant, we point out
that constructions are independent of the choice of constant.

The Haar measure defines a Lebesgue integral for measurable functions with compact
support. The Haar measure of the productH1�H2 of two locally compact groups equals,
up to a multiple, the product of the Haar measures of the factorsH1 andH2. Thus we can
apply Fubini’s theorem if we have an isomorphismH 'H1�H2 of topological groups,
quietly assuming that the Haar measures are suitably normalised.
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1.2.5 The groupV.A/_ of continuous group homomorphismsV.A/! S1 into the unit
circle S1 � C is called thecharacter groupof V.A/. If V.A/ is abelian, thenV.A/_ is
also called thePontryagin dualof V.A/. The crucial property of the Pontryagin dual is
that.V .A/_/_ D V.A/.

1.2.6 Let Ga be the additive group scheme andGm be the multiplicative group scheme.
ThenGa.A/ is the additive group ofA with the topology that we have defined before. Its
Pontryagin dual is isomorphic toGa.A/ itself in a non-canonical way. The groupGm.A/
is isomorphic to the idele group, and endows the ideles with a locally compact topology.

For example,Gm.A/ D GL1.A/ can be realised as the closed subspace defined by
X Y D 1 of the affine space with coordinatesX andY . The dual of the idele group is
somewhat involved, but in the following chapters, we investigate the quasi-characters of
F � nA�, a topological group closely related to the dual ofA�.

Finally, we warn the reader that the idele topology is finer than the subspace topology
of A� � A as the inclusion GLn.A/�Matn.A/ of the invertible matrices into alln-by-n-
matrices is not an embedding of topological spaces but only continuous. Only if we embed
GLn as closed subvariety into affine space Ak of some dimensionk, e.g. by sending points
g of GLn to .g;g�1/ in Matn�Matn ' A2n

2
, the induced map GLn.A/! Ak.A/ is a

topological embedding, which can be used to describe the topology on GLn.A/.

1.3 Automorphic forms

The concept of an automorphic form used nowadays can be applied to a large class of
algebraic groups. Moeglin and Waldspurger describe in [48] the theory for a certain class
of extensions of connected reductive groups. Here, however, we will restrict to GL2.
Standard reference books are the classic [32] by Jacquet and Langlands, [11] and [23]. We
consider automorphic forms on GL2 with trivial central character. These are nothing else
but automorphic forms on PGL2, but for technical reasons, it is more convenient to work
with GL2.

1.3.1 SetG DGL2 and letZ be the centre ofG. We will often writeGA instead ofG.A/,
ZF instead ofZ.F /, etc. LetK D GL2.OA/, which is the standard maximal compact
subgroup ofGA . The topology ofGA has a neighbourhood basisV of the identity matrix
that is given by all subgroups

K 0
D

Y
x2jX j

K 0
x <

Y
x2jX j

Kx D K

such that for allx 2 jX j the subgroupK 0
x of Kx is open and consequently of finite index

and such thatK 0
x differs fromKx only for a finite number of places.

Consider the spaceC 0.GA/ of continuous functionsf W GA ! C. Such a function
is calledsmoothif it is locally constant.GA acts onC 0.GA/ through theright regular
representation� WGA!Aut.C 0.GA// that is defined by right translation of the argument:�
�.g/f

�
.h/D f .hg/ for g;h 2 GA andf 2 C 0.GA/. Since we are only concerned with
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subrepresentations of�, we will also writeg:f for �.g/f . A functionf is calledK-finite
if the complex vector space that is generated byfk:f gk2K is finite dimensional.

A function f is called left or right H -invariant for a subgroupH < GA if for all
h 2 H andg 2 G, f .hg/ D f .g/ or f .gh/ D f .g/, respectively. Iff is right and left
H -invariant, it is calledbi-H -invariant.

1.3.2 Lemma. A functionf 2 C 0.GA/ is smooth andK-finite if and only if there is a
K 0 2 V such thatf is rightK 0-invariant.

Proof. If f is smooth, then we find for everyg 2 GA aKg 2 V such that for allk 2Kg ,
f .gk/D f .g/. If f is K-finite, spanfk:f gk2K admits a finite basisff1; : : : ;frg andK
acts on this finite-dimensional space. LetF D .f1; : : : ;fr / W GA ! Cr . By the linear
independence of basis elements, we findg1; : : : ;gr 2 GA such thatfF.gi /giD1;:::;r � Cr

is linearly independent. PutK 0 D Kg1
\ : : :\Kgr

, then for allk 2 K 0 andi D 1; : : : ; r ,
we havek:F.gi / D F.gik/ D F.gi /. ThusK 0 acts trivially on spanfk:f gk2K , and in
particular,f is rightK 0-invariant. The reverse implication is obvious.�

1.3.3 Let f be a smooth function that isK-finite and leftGFZA-invariant. We say that
f is of moderate growthif for every c > 0 and all compact subsetsK 0 � GA , there are
constantsC andN such that for allk 2K 0 anda 2 A� with jaj> c,

f
��
a
1

�
k
�
� C jajN :

1.3.4 Remark. The condition of moderate growth can be restated as follows, cf. [9, para-
graph 1.6] and [11, p. 300]. Choose a closed embeddingG! Ak into affine space, e.g.
the embedding described in paragraph 1.2.6, and consider the maximum normj jmax on
Ak.A/, which restricts toGA . A functionf 2 C 0.GA/ is of moderate growth if and only
if there are numbersN andC such that for allg 2GA ,

jf .g/jC � C jgj
N
max :

This notion is in fact independent of the chosen embeddingG! Ak and it is consistent
with the definition of the previous paragraph, cf. loc. cit.

1.3.5 Definition. ThespaceA of automorphic forms (with trivial central character)is the
complex vector space of all smooth functionsf W GA ! C that areK-finite, of moderate
growth and leftGFZA-invariant. Its elements are calledautomorphic forms.

1.3.6 Note that forg 2 GA andf smooth,K-finite, of moderate growth, or leftGFZA-
invariant,g:f is also smooth,K-finite, of moderate growth, or leftGFZA-invariant, re-
spectively. Thus the right regular representation restricts toA.

For every subspaceV � A, let V K
0

be the subspace of allf 2 V that are rightK 0-
invariant. The functions inAK0

can be identified with the functions onGFZA nGA =K
0

that satisfy an appropriate growth condition, cf. paragraph 5.5.1.AK is called the space
of unramified automorphic forms. Lemma 1.3.2 implies

1.3.7 Proposition. V D
[
K02V

V K
0

for every subspaceV �A. �
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1.3.8 Remark. A subrepresentation ofGA on C 0.GA/ is called smooth if the stabiliser
of each element ofC 0.GA/ is open inGA . Lemma 1.3.2 implies thatf 2 C 0.GA/ is
contained in a smooth subrepresentation if and onlyf is smooth andK-finite and the last
proposition states that every subrepresentation ofA is smooth.

1.4 The Hecke algebra

Hecke algebras are convolution algebras of functions with compact support on the adelic
points of the group under consideration. A representation of the group in a complex vector
space corresponds to a representation of the Hecke algebra by assigning an integral oper-
ator to each of its elements, which are called Hecke operators. We make this precise for
G DGL2. Fix a choice of Haar measure forGA . (Note thatGA is unimodular, i.e. the left
and right Haar measures coincide.)

1.4.1 Definition. The complex vector spaceH of all smooth compactly supported func-
tionsˆ WGA ! C together with the convolution product

ˆ1 �ˆ2 W g 7!

Z
GA

ˆ1.gh
�1/ˆ2.h/dh

for ˆ1;ˆ2 2H is called theHecke algebra forGA . Its elements are calledHecke opera-
tors.

1.4.2 The zero element ofH is the zero function, but there is no multiplicative unit. For
K 0 2V , we defineHK0 to be the subalgebra of all bi-K 0-invariant elements, i.e. all̂ 2H

that are left and rightK 0-invariant. These subalgebras, however, have multiplicative units,
to wit, the normalised characteristic function�K0 WD .volK 0/�1 charK0 acts as the identity
onHK0 by convolution.

1.4.3 Lemma. Everyˆ 2H is bi-K 0-invariant for someK 0 2 V .

Proof. Sinceˆ is locally constant andV is a system of neighbourhoods of the identity, we
can cover the support of̂ with sets of the formgiKi with gi 2 GA andKi 2 V , where
i varies in some index set, such thatˆ is constant on eachgiKi . But the support of̂ is
compact, so we may restrict to a finite index set. ThenK 00 D

T
iKi 2 V , andˆ is right

K 00-invariant. In the same manner, we find aK 000 2 V such that̂ is left K 000-invariant.
ThenK 0 DK 00\K 000 satisfies the assertion of the lemma.�

1.4.4 Proposition. H D
[
K02V

HK0 . �

1.4.5 Lemma. If ˆ1 2 H is left K1-invariant andˆ2 2 H is right K2-invariant for
K1;K2 2 V , thenˆ1 �ˆ2 is leftK1-invariant and rightK2-invariant.
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Proof. We calculate forg 2GA , k1 2K1, andk2 2K2 that

ˆ1 �ˆ2.k1gk2/ D

Z
GA

ˆ1.k1gk2h
�1/ˆ2.h/dh

D

Z
GA

ˆ1.gh
0�1/ˆ2.h

0k2/dh
0
Dˆ1 �ˆ2.g/

by the change of variablesh0 D hk�1
2 . �

1.4.6 The right regular representation� of GA onA induces theright regular representa-
tion ofHA onA by

�.ˆ/f W g 7!

Z
GA

ˆ.h/�.h/f .g/dh ;

which we also denote bŷ .f /. We have that̂ 1 �ˆ2.f / D ˆ1.ˆ2.f //. Restriction
gives a representation ofHK0 onAK0 for eachK 0 2 V .

Note that the right regular representation is not trivial since forf 2AK0

,

�K0.f /.g/ D

Z
GA

�K0.h/f .gh/dh D vol.K 0/�1
Z
K0

f .gh/dh D f .g/ :

1.4.7 Lemma. For everyf 2 C 0.GA/ and everŷ 2HK0 ,ˆ.f / is rightK 0-invariant.

Proof. Let g 2GA andk 2K 0, then

ˆ.f /.gk/ D

Z
GA

ˆ.h/f .gkh/dh D
.h0Dkh/

Z
GA

ˆ.k�1h0/f .gh0/dh0
D ˆ.f /.g/ : �

1.4.8 We call a subspace ofC 0.GA/ that is invariant underGA or H briefly aninvariant
subspace. It is also called aGA-moduleor anH -module. This is nothing else but a sub-
representation ofGA or H , also called anH -submodule ofA. An irreducible subspace
or simpleH -submoduleis a non-zero invariant subspace that has no other invariant sub-
spaces than the zero-space and itself. We call anHK0 -submoduleof V K

0

anHK0 -invariant
subspace for everyK 0 2 V , and we call itirreducible if it is non-zero and contains no
properHK0 -submodule different from the trivial subspace.

For anyK 0 2 V , let

H .V /D fˆ.f / jˆ 2H ;f 2 V g and HK0.V /D fˆ.f / jˆ 2HK0 ;f 2 V g

be theH -module and theHK0 -module, respectively, generated byV , and let

GA :V D fg:f j g 2GA ;f 2 V g

be theGA-module generated byV . Write GA :f WD GA :ff g, H .f / WD H .ff g/ and
HK0.f / WDHK0.ff g/ for f 2A andK 0 2 V .
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1.4.9 Proposition. If V � C 0.GA/ is an invariant subspace, thenHK0.V / D V K
0

for
eachK 0 2 V .

Proof. The inclusionHK0.V / � V K
0

follows from Lemma 1.4.7, the inclusionV K
0

�

HK0.V / from thatHK0 has a unit, see paragraph 1.4.2.�

1.4.10 Lemma.For everyK 0, every rightK 0-invariant f 2 C 0.GA/ and everyg 2 GA ,
there is â 2HK0 such that̂ .f /D g:f .

Proof. PutˆD .volK 0/�1 chargK0 , then for allg0 2A,

ˆ.f /.g0/ D

Z
GA

ˆ.h/f .g0h/dh D .volK 0/�1
Z
K0

f .g0gk/dk D g:f .g0/ : �

1.4.11 Lemma.For everyK 0 2 V and everŷ 2 HK0 , there areh1; : : : ;hr 2 GA and
m1; : : : ;mr 2 C for some integerr such that for allg 2GA and allf 2AK0

,

ˆ.f /.g/ D

rX
iD1

mi �f .ghi / :

Proof. Sincê isK 0-bi-invariant and compactly supported, it is a finite linear combination
of characteristic functions on double cosets of the formK 0hK 0 with h 2 GA . So we may
reduce the proof tô D charK0hK0 . Again, sinceK 0hK 0 is compact, it equals the union of
a finite number of pairwise distinct cosetsh1K 0; : : : ;hrK

0, and thusZ
GA

charK0hK0.h0/f .gh0/dh0
D

rX
iD1

Z
GA

charhiK
0.h0/f .gh0/dh D

rX
iD1

vol.K 0/f .ghi /

for arbitraryg 2GA . �

1.4.12 Proposition.A subspace ofC 0.GA/ is invariant underGA if and only if it is in-
variant underH , both acting via the right regular representation.

Proof. Lemma 1.4.10 implies that a subspace invariant underH is also invariant under
GA . The converse follows from Lemma 1.4.11.�

1.4.13 Lemma.A subspaceV � A is irreducible if and only ifV K
0

is irreducible as
HK0 -module for all sufficiently smallK 0 2 V .

Proof. Let V � A be irreducible. IfW � V K
0

is anHK0 -submodule for someK 0 2 V ,
thenH .W / is an invariant subspace ofV . Assume thatW is a proper subspace ofV K

0

.
Forˆ 2H andf 2W such that̂ .f / 2 V K

0

,

ˆ.f / D �K0.ˆ.f // D �K0.ˆ.�K0.f /// D �K0 �ˆ� �K0.f / ;

but by Lemma 1.4.5,�K0 �ˆ��K0 2HK0 , and thuŝ .f / 2W . This shows thatW equals
H .W /\V K

0

, and asV is irreducible, bothH .W / andW are trivial, soV K
0

is zero or
irreducible for everyK 0 2 V . SinceV is non-zero,V K

0

is non-zero for all sufficiently
smallK 0 2 V .
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If, on the other hand,V contains a proper nontrivial invariant subspaceW , then there
is aK 0 2 V such thatW K0

is a proper nontrivial subspace ofV K
0

. This proves the reverse
direction. �

1.4.14 We call HK the unramified part ofH . Its elements are called unramified Hecke
operators. Forx a place ofF , letˆx be the characteristic function ofK

�
�x

1

�
K divided

by volK, andˆx;0 the characteristic function ofK
�
�x

�x

�
K D

�
�x

�x

�
K. Both are

elements ofHK .

1.4.15 Lemma. Identifying�K with 1 2 C yieldsHK ' CŒˆx ;ˆx;0;ˆ�1
x;0�x2jX j. In par-

ticular, HK is commutative. For allf 2AK , one haŝ x;0.f /D f Dˆ
�1
x;0.f /.

Proof. The first assertion follows immediately from Proposition 4.6.2 and Theorem 4.6.1
in [11], the last from the fact thatf isZA-invariant. �

1.4.16 Remark. We are actually considering automorphic forms on PGL2, and the un-
ramified part of the Hecke algebra for PGL2 is nothing else butCŒˆx �x2jX j. For technical
reason, however, we will work with automorphic forms on GL2 that areZA-invariant, and
thus have to consider the Hecke algebra for GL2. The latter statement of the lemma can
be expressed by saying that the representation of the Hecke algebra for GL2 on A factors
through the representation of the Hecke algebra for PGL2.

1.5 Toroidal automorphic forms

This section introduces the object of investigation in this thesis, the space of toroidal auto-
morphic forms. We first collect some facts about maximal tori inG DGL2.

1.5.1 Definition. A maximal torus ofG is an algebraic subgroupT of G defined overF
such thatT .F sep/'Gm.F

sep/�Gm.F
sep/ over a separable closureF sepIn particular, it is

abelian. A torus is calledsplit overE if T .E/' Gm.E/�Gm.E/ for an field extension
E of F , andanisotropic overE otherwise. We say thatT is a split or anisotropic torus if
it is a maximal torus that is split or anisotropic, respectively, overF .

1.5.2 Let E=F be a separable quadratic algebra extension. ThenE is either a separable
field extension of degree2 of F or isomorphic toF ˚F ([6, §1] or [47, §26]). Choosing
a basis ofE as vector space overF defines an inclusion of algebras

‚E WE ' EndE .E/� EndF .E/
�
�!Mat2F ;

and‚E .E�/ is a maximal torus ofGF �Mat2F , isomorphic toE�. Note thatF � E
impliesZF � TF . It is split if and only ifE ' F ˚F .

On the other hand, every torusT is given by an embedding of this form, because
over the separable closureTF sep' .F sep/�˚ .F sep/�, which is the multiplicative group
of F sep˚F sep, a separable quadratic algebra extension ofF sep. Taking invariants under
the action of Gal.F sep=F / yields the embedding ofF �˚F � into a separable quadratic
algebra extension ofF as muliplicative group.

Since changing the basis that we used to define‚E conjugates the torus, we obtain:
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1.5.3 Proposition. The map

�
subfieldsE � F sep

quadratic overF

�
[ fF ˚F g

1W1
�!

˚
conjugation classes

of maximal
tori in GF

	

E 7�! ‚E .E
�/

is a bijection. The inverse map sends a maximal torusT to the fieldE whose group of
unitsE� is isomorphic toTF . �

1.5.4 Lemma. If T is an anisotropic torus, thenTFZA nTA is a compact abelian group.

Proof. As quotient of an abelian group,TFZA nTA is abelian. Concerning compactness,
observe that ifTF 'E�, thenTA ' A�

E ,ZA ' A�
F , andTF 'E� as topological groups,

and thusTFZA nTA 'E
�A�

F nA�
E . Look at the exact sequence of topological groups

1 �!O�
AE
�!E�

nA�
E �! ClE �! 0 ;

The action of the Galois group Gal.E=F / onE extends to an action onAE with invariants
preciselyAF . We have thatE�\A�

F D F
� andO�

AE
\A�

F DO�
AF

. Dividing out byA�
F

yields
1 �!O�

AF
nO�

AE
�!E�A�

F nA�
E �! ClE = j.ClF / �! 0 ;

wherej W ClF ! ClE is the canonical map. Since the left and the right term are both
compact groups, so is the middle one.�

1.5.5 Lemma. If T is an split torus, thenTFZA nTA ' F
� nA�.

Proof. There is an isomorphismT ' Gm�Gm overF that inducesTF ' F ��F � and
TA ' A��A�. This gives

TFZA nTA ' .ZF nZA/n.TF nTA/

' .F �
nA�/ n

�
.F �
nA�/� .F �

nA�/
�
' F �

nA� : �

1.5.6 Lemma. If T is an anisotropic torus withTF 'E�, then it splits overE.

Proof. We definedTF as the image ofE� under the injective algebra homomorphism
‚E WE!Mat2.F / overF . IdentifyingTF with E� yields

TE ' .E˝F E/
�
'

M
�2Gal.E=F /

�.E/� '
M

�2Gal.E=F /

Gm.E/ : �

1.5.7 We recall some facts about Borel subgroups from the theory of linear algebraic
groups, cf. [8, §§11.1–11.3] or [74, §10.5]. ABorel subgroupB of G is an algebraic
subgroup ofG defined overF such that the quotient varietyB nG is isomorphic toP1

overF , and thestandard Borel subgroupis the subgroup of invertible upper triangular
matrices.

Every Borel subgroupB of G contains a maximal split torusT , and is conjugated in
G to the standard Borel subgroup such thatT conjugates to the diagonal torus, i.e. the
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group of invertible diagonal matrices. On the other hand, every split torusT is contained
in precisely two different Borel subgroups, and if we call the oneB, then we call the other
BT .

A Borel subgroupB contains a uniqueunipotent radicalN , i.e. a subgroup of maximal
size whose elements are the sum of the identity matrix with a nilpotent matrix. IfT is a
split torus contained inB, thenB D TN . We denote the unipotent radical ofBT byN T .

Since the following constructions are invariant under conjugation, it suffices to keep in
mind the standard Borel subgroupB together with the diagonal torusT . ThenBT is the
group of invertible lower triangular matrices, which is conjugated toB by

�
1

1

�
, leaving

T invariant, but interchanging the values on the diagonal. The algebraic groupsN and
N T are nothing else but the matrix groups

˚�
1 �
1

�	
and

˚�
1
� 1

�	
, respectively.

1.5.8 Remark. For better readability we leave a blank space where matrix entries are
zero, and asterisks stand for arbitrary elements of the ring under consideration that make
the matrix invertible. So

�
1
1

�
has to be read as

�
1 0
0 1

�
, and

˚�
� �
1

�	
stands for the algebraic

subgroupH of G that gives the subgroupHR D
˚�
a b
0 1

�ˇ̌
a 2R�;b 2R

	
of GR for every

algebraR overF .

1.5.9 ([11, Thm. 3.5.5], [48, §§I.2.6–I.2.7]). LetB be a Borel subgroup with split torus
T and unipotent radicalN . Then define theconstant termfN (with respect toN ) of an
automorphic formf 2A as the following function onGA :

fN .g/ WD vol.NF nNA/
�1

Z
NF nNA

f .ng/dn :

SinceN is invariant under conjugation byB, fN is a function that is leftBFZA-invariant.
If fN .g/ vanishes for allg 2 GA , we call f a cusp form, a notion that does not

depend on the chosen Borel subgroup, since forB
 D 
B
�1 with unipotent radical
N
 D 


�1N
 ,

fN

.g/ D

Z
N
 .F /nN
 .A/

f .ng/dn D

Z
NF nNA

f .
�1n
g/dn D

Z
NF nNA

f .ng
 /dn D fN .g
 /

with g
 D 
g running throughGA asg varies inGA . We denote the whole space of cusp
forms byA0.

Every automorphic form has anapproximation by constant terms:

1.5.10 Theorem ([48, I.2.9]).For everyf 2A, the functionf �fN has compact support
as a function onBFZA nGA .

Let e 2GA denote the identity matrix.

1.5.11 Proposition.Cusp forms have compact support moduloGFZA , and for the unipo-
tent radicalN of any Borel subgroup,

A0 D ff 2A j 8ˆ 2H ;ˆ.f /N .e/D 0g :

Proof. The first claim follows from theorem 1.5.10. The second claim follows from Lem-
mas 1.4.10 and 1.4.11. �
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1.5.12 LetT be an anisotropic torus, and endowZA andTA with Haar measures such that
ZA ' A�

F andTA ' A�
E as measure spaces. EndowTF with the discrete measure. This

defines a Haar measure onTFZA nTA as quotient measure. We call

fT .g/ WD

Z
TFZA nTA

f .tg/dt

the toroidal integral ofT (evaluated atg). By Lemma 1.5.4 the integral converges for all
f 2A andg 2GA .

If T is a split torus, then endowTA ' A�˚A� with the product measure ofA�.
Further letZA carry the same measure as before and letTF carry the discrete measure.
This defines a quotient measure onTFZA nTA . Let B andBT be the Borel subgroups
that containT , and letN andN T , respectively, be their unipotent radicals. Note that
TFZA nTA is not compact, but according to Theorem 1.5.10, bothf �fN andf �fNT

have compact support as functions onBFZA nGA andBTFZA nGA , respectively. The
toroidal integral ofT (evaluated ing) is

fT .g/ WD

Z
TFZA nTA

�
f �

1

2
.fN CfNT /

�
.tg/dt ;

which converges for allf 2A and any choice of Haar measure onTFZA nTA .

1.5.13 Definition. Let T be a maximal torus ofG corresponding to a separable quadratic
algebra extensionE=F . Then define

Ator.E/ D ff 2A j 8g 2GA ; fT .g/D 0g ;

the space ofE-toroidal automorphic forms, and

Ator D
\

separable quadratic
algebra extensionsE=F

Ator.E/ ;

the space oftoroidal automorphic forms.

1.5.14 Remark. The spacesAtor.E/ indeed do not depend on the choice of torus in the
conjugacy class corresponding toE, because a calculation similar to that forfN proves
that for a conjugateT
 D 
�1T 
 with 
 2 GF , we havefT


.g/D fT .g
 /, whereg
 D

g. Note that the definition is also independent of the choices of Haar measures.

1.5.15 Proposition.For all T andE as above,

Ator.E/D ff 2A j 8ˆ 2H ;ˆ.f /T .e/D 0g ;

and
Ator D ff 2A j 8 maximal toriT < G; 8ˆ 2H ; ˆ.f /T .e/D 0g :

Proof. This follows from Lemmas 1.4.10 and 1.4.11.�



CHAPTER 2

L-series and Eisenstein series

This chapter introduces the notions and reviews the results from the theory of
L-series and Eisenstein series that are needed in the subsequent chapters.

2.1 Quasi-characters

Quasi-characters onA� that are continuous and trivial onF � have a simple description in
terms of invariants ofA�. This section gives an overview with short proofs. For alternative
and more detailed introductions, cf. Tate’s thesis [65] (for number fields only) and [79,
VII.3].

2.1.1 A continuous group homomorphism� W A�! C� that is trivial onF � is called a
quasi-character(on the idele class groupF � nA�). If �.A�/� S1 D fz 2 C j jzjC D 1g,
then we call it acharacter. The product�1�2 W a 7! �1.a/ ��2.a/ defines a group structure
on the set of quasi-characters„. Together with the compact-open topology,„ becomes a
topological group.

For an effective divisorD D .Dx/, let

„D D

�
� 2„

ˇ̌̌̌
�.a/D 1 for all a 2O�

A such that
8x 2 jX j ; ax � 1 .mod mDx

x /

�
:

A quasi-character� is calledunramifiedif � 2„0.

2.1.2 The choice of an idelea1 of degree1 defines a section for the sequence in paragraph
1.1.5 (by identifyingZ with the subgroupA1 D ha1i). We obtain a decomposition

A�
D A�

0 �A1 :

Observe that the natural logarithm

ln W C�
�! C=2� iZ

is well defined as inverse to the exponential map since it factors overC=2� iZ. Let e
denote the Euler number. In the quasi-characterj js, where the idele normj j satisfies
ja1j D q

�1 D e� lnq , the complex numbers is determined up to.2� i= lnq/Z.

23
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2.1.3 Lemma. For any� 2„, andA1 as above, the restriction�jA�
0

is of finite order, and
�jA1
D j j

s with

s � �
ln�.a1/

lnq
.mod

2� i

lnq
Z/ :

Proof. SinceF � nA�
0 is compact, the image of�jA�

0
is compact. SinceA� is totally

disconnected, every quotient ofA� is totally disconnected. The only totally disconnected
compact subgroups ofS1 are the finite subgroups, hence�jA�

0
is of finite order. To prove

the second statement, observe thatA1 is generated bya1, hence�.a1/ determines the
group homomorphism�jA1

, which then has the form as described as in the lemma.�

2.1.4 Proposition. With the notation of Lemma 2.1.3, there is a unique character! of
finite order such that!jA�

0
D �jA�

0
and!.a1/D 1. Consequently, we have

�.a/D !.a/ jajs : �

2.1.5 Both! ands depend on the choice ofa1. For a different choicea0
1, one obtains

s0
� sC

ln�.a1/� ln�.a0
1/

lnq
.mod

2� i

lnq
Z/ and !0

D ! j js
0�s :

Conversely, for two characters! and!0 of finite order, there is as 2 C with !0 D ! j js if
and only if!jA�

0
D !0jA�

0
.

Define thereal partRe� of � as Res. For different choices ofa1 anda0
1, we have that

j j
s0�s
D !0!�1 is a character and thus Rej js

0�s
D 0. This shows that the real part of�

does not depend on the choice ofa1.

2.1.6 Proposition. The assignment

„0
�
�! .Cl0F /_�C=2� i

lnq Z
� 7�! .!jA�

0
; s/

given by the decomposition�D ! j js of Corollary 2.1.4 is an isomorphism of topological
groups, and endows„0 with the structure of a Lie group.

Proof. By Proposition 2.1.4 and the previous paragraph, every� 2 „0 is in one-to-one
correspondence with ans 2 C=2� i

lnq Z and a quasi-character! of F � nA�
0 that satisfies

!.O�
A /D 1. ButF � nA�

0 =O�
A ' Cl0F .

Concerning the topologies, note that the group of character group ofA1 (as in Lemma
2.1.3) is homeomorphic to the unit circleS1. Consequently the group of quasi-characters
restricted toA1 is homeomorphic toC=2� i

lnq Z. �

2.1.7 SinceO�
A is compact and totally disconnected, it is a profinite group ([25, §1.4,

Thm. 1]). By [25, §1.4, Cor. 1], we can describeO�
A as inverse limit as follows. Define for

every effective divisorD D .Dx/ the subgroup

UD D fa 2O�
A j 8x 2 jX j ; ax � 1 .mod mDx

x /g
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of O�
A and the finite quotient groupQD D O�

A =UD. Together with canonical projections,
the groupsQD for varying effective divisorD form a projective system. The groupO�

A is
the projective limit of this system.

By Pontryagin duality ([51, §37, Thms. 39, 40 and 46]), the character group of the idele
class groupF � nA� is the union of the character groups ofF � nA� =UD. By Lemma
2.1.3, every quasi-character is the product of a character andj j

s for somes 2 C. Since
j j
s
2„D for all s 2 C and all effective divisorsD, we obtain:

2.1.8 Proposition. „D
S

effective
divisorsD

„D. �

2.2 L-series

As reference for this section, consider [65] and [79], but also [61] and [59].

2.2.1 Let � 2„ andS D fx 2 jX j j 9ax 2O�
x ; �.ax/¤ 1g, then define

LF .�;s/D
Y

x2jX j�S

1

1��.�x/ j�xj
s

whenever the product converges. If no confusion arises, we omit the subscriptF and write
L.�;s/.

Recall from paragraph 1.1.5 thatc 2 A� is a differental idele.

2.2.2 Theorem ([79, VII, §§ 6-7], [55, Prop. 9.26]).The expressionL.�;1=2C s/ con-
verges ifRes > 1=2�Re�, is analytic ins, and has a meromorphic continuation to all
s 2 C, which we denote by the same symbolL.�;1=2C s/. It has poles in thoses for
which� j js D j j˙1=2, and the poles are of order1. Furthermore, it satisfies afunctional
equation

L.�;1=2C s/D �.�;s/L.��1;1=2� s/

for a certain non-zero factor�.�;s/. If � 2„0, then�.�;s/D �.c/ jcjs.

2.2.3 Remark. We chose to formulate the theorem forL.�;1=2C s/ instead ofL.�;s/
to emphasise the analogy with the corresponding statements for Eisenstein series as intro-
duced in the next section.

2.2.4 Definition. We callL.�;s/ theL-series of the quasi character�, and define thezeta
functionof F as�F .s/ WD L.1;s/.

2.2.5 An alternative expression for the zeta function is

�F .s/D
X

effective
divisorsD

1

N.D/s
;
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a sum that converges for Res > 1, where N.D/ D qdegD. If ! is a finite unramified
character, i.e.! factors through the divisor class group, then

LF .!;s/D
X

effective
divisorsD

!.D/

N.D/s
;

if Res > 1.

2.2.6 Let  W A! C be a Schwartz-Bruhat function, i.e. a locally constant function with
compact support. Choose a Haar measure onA� and define theTate integral

L. ;�;s/D

Z
A�

 .a/�.a/ jajs da ;

whenever the integral converges. Define the Schwartz-Bruhat function 0 by

 0 D hF .q�1/
�1 .volOA/

�1 charOA :

2.2.7 Theorem ([79, VII, Thm. 2 and §§ 6-7]).The expressionL. ;�;1=2C s/ con-
verges ifRes > 1=2�Re�. For every Schwartz-Bruhat function and � 2 „, it is a
holomorphic multiple ofL.�;1=2C s/ as function ofs 2 C. For every� 2 „ there is a
Schwartz-Bruhat function such thatL. ;�;s/D L.�;s/. In particular if � 2„0, then
L. 0;�;s/D L.�;s/.

2.2.8 Theorem ([79, Thms. VII.4 and VII.6]).

(i) The zeta function ofF is of the form

�F .s/ D
L.q�s/

.1�q�s/.1�q1�s/

with L.T /D L.1;T / a polynomial of degree2gF with integer coefficients that has
no zero atT D 1 or T D q�1. In particular,�F has simple poles atsD 0 andsD 1.

(ii) For everys0 2 C and� D j js
0

, there is a polynomialL.�;T / with complex coeffi-
cients of degree2gF such that

L.�;s/ D
L.�;q�s/

.1�q�.sCs0//.1�q1�.sCs0//
:

ThisL-series has simple poles ats D�s0 ands D 1� s0.

(iii) For every unramified character� that cannot be written asj js for somes 2C, there
is a polynomialL.�;T / with complex coefficients of degree2gF �2 such that

L.�;s/ D L.�;q�s/ :
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2.2.9 Let E=F be a finite Galois extension and NE=F W AE ! AF the norm map. Then
the reciprocity homomorphismrE=F WGal.E=F /! F �NE=F .A�

E /nA�
F induces an iso-

morphism

r�
E=F W Hom.F �NE=F .A

�
E /nA�

F ; S1 / �! Hom.Gal.E=F /; S1 / :

If ! is a character of Gal.E=F /, then denote byQ! the corresponding character ofA�
F

that is trivial onF � and NE=F .A�
E /. In particular, sinceE=F is unramified if and only if

O�
A � NE=F .A�

E /, we see thatQ! is unramified ifE=F unramified is.

2.2.10 Lemma.LetE=F be a finite abelian Galois extension and� 2„. Then

LE .�ıNE=F ; s/ D
Y

!2Hom.Gal.E=F /;S1/

LF .� Q!;s/

as meromorphic functions ofs.

Proof. This follows easily from a formal calculation with Euler products. Since these
converge for large Res, this yields an equality of meromorphic functions.�

2.2.11 Proposition.Let� 2„ be of finite ordern. Then there is an abelian Galois exten-
sionE=F of ordern such that�.NE=F .A�

E //D 1, andY
!2Hom.Gal.E=F /;S1/

LF .�ı Q!;s/D �E .s/

as meromorphic functions ofs. If � is an unramified character, thenE=F is an unramified
field extension.

Proof. The existence ofE=F such that the equation holds follows from class field theory
together with Lemma 2.2.10 since�.NE=F .A�

E // D 1 implies thatLE .� ıNE=F ; s/ D
LE .1;s/D �E .s/. The last assertion follows from paragraph 2.2.9.�

2.2.12 Corollary. If � 2„ is of finite order and not of the formj js for somes 2 C, then

L.�;0/¤ 0 and L.�;1/¤ 0 :

Proof. This follows from the equation of the proposition, since both�F and �E have
simple poles ats D 0 ands D 1, and�F occurs precisely once in the product on the left
hand side, so all other factors do not vanish ats D 0 ands D 1 and in particularL.�; � /
does not. �

2.2.13 Corollary. LetE=F be a finite Galois extension, anda 2 A� an idele of degree1.
If s is an-fold zero of Y

! unram. char.
of ClF; !.a/D1

LF .!;s/ ;

thens also is at least ann-fold zero ofY
! unram. char.

of ClF; !.a/D1

LE .! ıNE=F ; s/ :

Proof. This follows immediately from Theorem 2.2.8 and Lemma 2.2.10.�
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2.3 Eisenstein series

Originally, Eisenstein series were defined as modular forms on the upper half plane, given
by explicit infinite sums. With the development of the theory of automorphic forms, these
sums found generalisation in different directions. This section introduces the notion of
Eisenstein series that we will use and states the most important facts in the form we need
it in. As references consider [11], [23], [32] and [41], where the theory is explained for
GL2, or [10], [26] and [48] for more general approaches.

2.3.1 LetB be the standard Borel subgroup of upper triangular matrices, and�1;�2 2„.
The principal series representationP .�1;�2/ (of �1 and�2) is the space of all smooth
andK-finite f 2 C 0.GA/ that for all

�
a b
d

�
2 BA and allg 2GA satisfy

f
�0@a b

d

1Ag� D ˇ̌̌ a
d

ˇ̌̌1=2
�1.a/�2.d/f .g/ :

The right regular representation� ofGA onC 0.GA/ as defined in paragraph 1.3.1 restricts
to P .�1;�2/. By the equivalence ofGA- andH -modules (Proposition 1.4.12),P .�1;�2/

is also anH -module.

2.3.2 Theorem.Let �1;�2 2 „. The principal series representationP .�1;�2/ is irre-
ducible unless�1��1

2 D j j
˙1.

Proof. This can be proven by reduction to the representation theory over local fields, cf.
[23, chapter 4.B] or [11, section 4.5], as well as the comment on page 355 of the same
book. �

2.3.3 Theorem.LetP .�1;�2/ be irreducible. ThenP .�1;�2/'P .�0
1;�

0
2/ asH -modules

if and only if either

(i) �1 D �
0
1 and �2 D �

0
2 or (ii) �1 D �

0
2 and �2 D �

0
1:

Proof. See the references in the proof of the previous theorem.�

2.3.4 Proposition. f 2P .�1;�2/ is uniquely determined by its restriction toK.

Proof. This follows immediately from the Iwasawa decompositionGA D BAK (also cf.
paragraph 4.2.2), and the definition ofP .�1;�2/. �

2.3.5 Since we consider only automorphic forms with trivial central character, it suffices
to restrict to�D �1 D ��1

2 , and we briefly writeP .�/ for P .�;��1/.
Let � 2 „. A flat sectionis a mapf� W C! C 0.GA/ that assigns to eachs 2 C an

elementf�.s/ 2P .� j js/ such thatf�.s/jK is independent ofs.

2.3.6 Proposition ([11, Prop. 3.7.1]).For everyf 2 P .�/, there exists an unique flat
sectionf� such thatf D f�.0/. We sayf is embedded in the flat sectionf�.
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2.3.7 For the remainder of this section, fix� 2 „, f 2 P .�/, andg 2 GA . Since� is
trivial onF �, f 2P .�/ is leftBF -invariant, and we may define

E.g;f / WD L.�2;1/ �
X


2BF nGF

f .
g/ ;

provided the sum converges. Iff is embedded in the flat sectionf�, then put

E.g;f;s/DE.g;f�.s//

for thoses for which the right hand side is defined. If� 2 „0 and�2 ¤ j j˙1, then
P .�/K is 1-dimensional by Schur’s lemma (cf. Lemma 3.1.10) and contains thus a unique
spherical vector, i.e. anf 0 such thatf 0.k/D 1 for all k 2K. Then define

E.g;�;s/DE.g;f 0; s/ :

2.3.8 Theorem ([41, Thm. 2.3]).The functionE.g;f;s/ converges for everyg 2 GA

andRes > 1=2�Re�, and is analytic as a function ofs. It is an automorphic form as a
function ofg.

2.3.9 LetN be the unipotent radical of the standard Borel subgroupB �G. The constant
termEN . � ;f;s/ of E. � ;f;s/ as defined in paragraph 1.5.9 is

EN .g;f;s/ D L.�2;1C2s/
�
f .g/CM�.s/f .g/

�
with

M�.s/f .g/ D

Z
NA

f .
�

1
1 b

�
g/ db ;

cf. [11, pp. 352–353]. The operatorM�.s/ is an intertwining operator, i.e. an isomorphism
of GA-modules

M�.s/ W P .� j js/ �! P .��1
j j

�s/ :

2.3.10 Theorem ([41, Thm. 3.2]). (i) As a function ofs,E.g;f;s/ has a meromorphic
continuation to alls 2 C. It has simple poles in thoses for which�2 j j2s D j j˙1.

(ii) The functionM�.s/ W P .� j j
s/! P .��1 j j

�s/ extends to alls except for those
which satisfy�2 j j2s D 1. If �2 j j2s ¤ j j˙1, thenM�.s/ is an isomorphism.

2.3.11 Definition. The meromorphic continuation ofE. � ;f / D E. � ;f;0/ is called the
Eisenstein series associated tof . If � 2 „0, thenE. � ;�/ D E. � ;�;0/ is called the
Eisenstein series associated to�.

2.3.12 Remark. In the literature there is a difference in the normalisation ofs. While clas-
sical Eisenstein series for the complex upper half plane were originally defined such that
the centre of symmetry of the functional equation lies atsD 1=2, the literature on automor-
phic forms on adele groups usually defines Eisenstein series such that the centre of sym-
metry lies atsD 0. We stick to the latter, whence theL-factorL.�2;1/DL..� j j1=2/2;0/
in the definition of the Eisenstein series.
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2.3.13 Theorem ([41, Thm. 3.1]).Let�2„, letf 2P .�/ be embedded in the flat section
f�.s/. Define Of DM�.0/f 2P .��1/ embedded into the flat sectionOf��1.s/. Then there
is a functionc.�;s/ that is holomorphic ins 2 C such that

M�.s/ f D c.�;s/ Of��1.�s/

for all � 2„ ands 2 C unless�2 j j2s D 1.

2.3.14 Theorem ([41, Thm. 5.2]).For everyf 2P .�/, thefunctional equation

E. � ;f;s/ D c.�;s/ E. � ; Of ;�s/

holds if�2 j j2s ¤ j j˙1, where Of 2 P .��1/ andc.�;s/ are as in the previous theorem. If
� 2„0, then

E.g;�;s/ D �2.c/ jcj2s E.g;��1;�s/ :

2.3.15 Proposition ([11, Prop. 3.7.3]).Let � 2 „ such that�2 ¤ j j˙1, andf 2 P .�/.
ThenE. � ;f / is an automorphic form as a function of the first argument.

2.3.16 Since the Eisenstein seriesE. � ;f / is a sum over left translates off . � /, and this
sum does not interfere with the action ofH (which is defined in terms of right translates),
the map

P .�/ �! A

f 7�! E. � ;f /

is a morphism ofH -modules.

2.3.17 Let a 2 A� and t D
�
a
1

�
. Let �2 ¤ j j˙1. Sincef 2 P .�/ and Of 2 P .��1/,

Theorem 2.3.13 implies that for everyg 2GA ,

EN .tg;f / D L.�2;1/
�
�.a/ jaj1=2 f .g/ C c.�;0/ �.a/�1 jaj1=2 Of .g/

�
;

which equalsE.tg;f / if dega is large enough, see Theorem 1.5.10.
In particular, if� 2„0, then [41, eq. (3.7)] says that

EN .t;�/ D jaj
1=2

�
L.�2;1/�.a/C �2.c/L.��2;1/��1.a/

�
:

If �2 D 1, eachL-series on the right hand side has poles and thus the equation is not
defined. However one can calculate with help of the functional equation and [41, eq.
(3.7)] that in this caseEN .t;�/D 2�.a/ jaj

1=2.

2.3.18 Proposition.Let � 2 „ such that�2 … f1; j j˙1g or let � 2 „0 with �2 D 1. If
f 2P .�/ is nontrivial, thenE. � ;f / is nontrivial.

Proof. Choose ag 2 GA such thatf .g/¤ 0. First, let�¤ ��1. Let nowa 2 A� be of
degree1 such that�.a/¤˙1. For arbitraryc1; c2 2 C that do not vanish both, there are
arbitrarily largen such thatc1�.a/nC c2�.a/�n ¤ 0. Put t D

�
a
1

�
. Then by paragraph

2.3.17, there is a largen such that

E.tng;f / D EN .t
ng;f / D L.�2;1/ jajn=2

�
f .g/�.a/n C Of .g/�.a/�n

�
¤ 0 :
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If � D ��1 is unramified, we may assume thatf D f 0 since we only have to show
that the irreducibleGA-moduleP .�/ maps nontrivially toA. Then by paragraph 2.3.17,
we have for largen,

E.tng;�/ D EN .t
ng;�/ D 2�.a/n jajn=2f .g/ ¤ 0 : �

2.3.19 Corollary. Let � 2 „ such that�2 … f1; j j˙1g or let � 2 „0 with �2 D 1. If
f 2P .�/ is nontrivial, thenE. � ;f / has non-compact support.

Proof. This follows from the last proposition. The constant termEN . � ;f / of an Eisen-
stein seriesE. � ;f / has non-compact support, and differs from the Eisenstein series only
on a compact set (Theorem 1.5.10).�

2.3.20 Let' WA2!C be a Schwartz-Bruhat function, i.e. a locally constant function with
compact support. Choose a Haar measure onZA and define

f';�.s/ W g 7�!

Z
ZA

'..0;1/zg/�.detzg/ jdetzgjsC1=2 dz :

This is a Tate integral and converges for Res > 1=2�Re� (Theorem 2.2.7). The definition
of ' ensures us thatf';�.s/ is smooth andK-finite, and because

f';�.s/.
�
a b
d

�
g/ D �.ad�1/

ˇ̌
ad�1

ˇ̌sC1=2
f';�.s/.g/ ;

we havef';�.s/ 2P .� j js/. Define the particular Schwartz-Bruhat function

'0 D hF .q�1/
�1 .volO2

A/
�1 charO2

A
:

2.3.21 Proposition.LetRe� > 1.

(i) For all f 2 P .�/, there exists a Schwartz-Bruhat function' W A2 ! C such that
f D f';�.0/.

(ii) If � 2„0 andf D f 0 is the spherical vector, thenf'0;�.0/D L.�
2;2sC1/f 0.

Proof. In [79, VII.6–VII.7], Weil constructs for every� 2„ a Bruhat-Schwartz function
' such thatf';�.0/ is nontrivial. For a proof of (ii) observe that forg D e,

f'0;�.0/.e/ D

Z
ZA

'0..0;1/z/�.detz/ jdetzjsC1=2 dz ;

which is the Tate integral forL. 0;�;s/D L.�2;2sC1/, cf. Theorem 2.2.7.
For a proof of (i) observe that'g D '. � g/ is still a Schwartz-Bruhat function for every

g 2GA , andg:f';�.0/D f'g ;�.0/ is still a function inP .�/. By Theorem 2.3.2, Re� > 1
implies thatP .�/ is irreducible, and thusGA :f';�.0/DP .�/. �
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2.3.22 Define
E.g;';�;s/ D

X

2BF nGF

f';�.s/.
g/

for Res > 1=2�Re�. This definition extends to a meromorphic function ofs 2 C. Put
E.g;';�/D E.g;';�;0/. The last proposition implies that the class of Eisenstein series
of the formE. � ;';�/ is the same as the class of Eisenstein series of the formE. � ;f /.
For a� 2„0, we obtain the equalityE. � ;'0;�;s/DE. � ;�;s/.

2.4 Residues of Eisenstein series

Where the Eisenstein series have poles, automorphic forms are hidden as the residues at
these poles.

2.4.1 Let� 2„ with �2 D j j˙1, f 2P .�/, andg 2GA . ThenE.g;f;s/ as a function of
s has a pole ats D 0, which is order1. Thus the Eisenstein series has a nontrivial residue

R.g;f / WD RessD0 E.g;f;s/ D lim
s!0

s �E.g;f;s/ ;

which is itself an automorphic forms since manipulations of the first argumentg commute
with the limit and multiplication bys. Moderate growth (paragraph 1.3.3) will be clear
from Theorem 2.4.2. Define

R. � ;�/D RessD0 E. � ;�/

if � is unramified. The functional equation has a natural extension to residues of Eisenstein
series. In particular, for unramified�, it becomes

R. � ;�/ D ��2.c/R. � ;��1/ :

Let ' W A2! C be a Schwartz-Bruhat function. Then one can also define

R. � ;';�/D RessD0 E. � ;';�/ :

From the result for Eisenstein series, one obtains that for every', there is af 2 P .�/

such thatR. � ;';�/DR. � ;f /, and vice versa.

2.4.2 Theorem ([24, Thm. 4.19]).Let � D ! j j˙1=2 be a quasi-character with!2 D 1
andf 2P .�/, thenR. � ;f / D R.e;f /.! ıdet/ as functions onGA .

2.4.3 Corollary. Let � D ! j j˙1=2 be a quasi-character with!2 D 1. Then theH -
submodulefR. � ;f /gf 2P .�/ �A is 1-dimensional. �



2.5 Derivatives 33

2.5 Derivatives

The space of automorphic forms contains more interesting functions, namely, derivatives
of Eisenstein series. Similarly, there are also functions that play the role of derivatives of
residues and which we simply call derivatives of residues by abuse of terminology.

2.5.1 For i � 0, Schwartz-Bruhat functions W A!C and' W A2!C and� 2„ define
thederivative of anL-seriesand thederivative of an Eisenstein seriesas

L.i/. ;�;s/ D
d i

dsi
L. ;�;s/ and

E.i/.g;';�;s/ D
d i

dsi
E.g;';�;s/

in the sense of derivatives of meromorphic functions ofs. Define thederivative of the
residue of an Eisenstein seriesas

R.i/.g;';�/ D lim
s!0

d i

dsi
s �E.g;';�;s/

if �2 D j j˙1.

2.5.2 Lemma. For Res > 1�Re�,

L.i/. ;�;s/ D

Z
A�

 .a/�.a/
�
ln jaj

�i
jajs da :

Proof. Sincejajs D elnjaj
s

D es lnjaj, we have

d i

dsi
jajs D

�
ln jaj

�i
jajs :

We have to show thatd
i

dsi commutes with the integral. Since this is a local question, we
may restrict to a compact neighbourhood ofs.

We apply standard results from analysis in two steps. First observe that

A�
D

[
S finite set
of divisors

U.S/ with U.S/ D
[

DD.Dx/2S

.�Dx
x /O�

A :

All subsetsU.S/ are compact, thusZ
U.S/

d i

dsi
 .a/�.a/ jajs da D

d i

dsi

Z
U.S/

 .a/�.a/ jajs da :

(This standard result can be found, for example, in [37, Thm. XIII.8.1]. Note that replacing
the compact intervalŒa;b� in loc. cit. by the compact measure spaceU.S/ does not change
the proof.)
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Secondly, we choose a sequencefSngn�0 of finite sets of divisors such thatSn � SnC1

for all n� 0 andA� D
S
n�0U.Sn/. Write

fn.s/ D

Z
U.Sn/

 .a/�.a/ jajs da

for short. Thenffng converges toL. ;�;s/. Since we restricted to a compact domain for
s, the sequence �

d i

dsi
fn

�
�!
n!1

Z
A�

d i

dsi
 .a/�.a/ jajs da

converges uniformly. From a standard result about exchanging limits and derivatives ([37,
Thm. XIII.9.1]) the lemma follows. �

2.5.3 Lemma. For Res > 1=2�Re�,

E.i/.g;';�;s/ D
X

BF nGF

Z
ZA

'..0;1/zg/�.detzg/
�
ln jdetzgj

�i
jdetzgjsC1=2 dz :

Proof. The proof is completely analogous to the one of the previous lemma.�

2.5.4 Lemma. For Res > 1=2�Re�,

E.i/.g;';�;s/ D

Z
ZF nZA

X
u2F 2�f0g

'.uzg/�.detzg/
�
ln jdetzgj

�i
jdetzgjsC1=2 dz :

Proof. LetGF act onP1.F / by multiplication from the right. ThenBF is the stabiliser of
Œ0 W 1�, and thus we have a bijection

BF nGF
1W1
�! P1.F / D ZF n.F

2�f0g/ :

g 7�! Œ0 W 1�g

Since
P

2BF nGF

f .
g/ is absolutely convergent for everyf 2 P .� j js/ andg 2 GA ,
([41, Thm. 2.3]), the lemma follows by Fubini’s theorem from Lemma 2.5.3.�

2.5.5 Lemma. For �D ! j j˙1=2 with!2 D 1 andi � 1,

R.i/.g;';�/D lim
s!0

�
i �E.i�1/.g;';�;s/C s �E.i/.g;';�;s/

�
: �

2.5.6 Lemma. Let � 2 „0 satisfy�2 D 1. If L.�;1=2/ D 0, then1=2 is a zero of even
multiplicity.

Proof. Since the divisor class represented byc is a square in the divisor class group, cf.
[79, XIII.12, thm. 13],�.c/D 1. LetL.i/.�; �/ vanish at1=2 for all i D 0; : : : ;n� 1, for
some oddn. We will show that in this case the multiplicity of1=2 as a zero must be strictly
larger thann. Taking into account the vanishing of lower derivatives and�.c/D 1, then-th
derivatives of both sides of the functional equation are

L.n/.�;1=2/D .�1/nL.n/.��1;1=2/ :

ThusL.n/.�;s/D 0 as.�1/n D�1. �



CHAPTER 3

Admissible automorphic forms

Admissible representations ofGA are one of the most important objects in the
theory of automorphic forms. This class of representations is large enough
to contain interesting representations, but it is still small enough to guarantee
that every admissible representation decomposes as an algebraic sum into well-
known components. This chapter describes all possible unramified admissible
subrepresentations of the space of automorphic forms along with the action
of the unramified part of the Hecke algebra on these subrepresentations. The
last section characterises simultaneous eigenfunctions of all unramified Hecke
operators by their eigenvalues.

3.1 Admissible representations

3.1.1 Let V be a subset of the spaceA of automorphic forms. We use the neighbourhood
basisV of e inGA as introduced in paragraph 1.3.1 and we use the convention of paragraph
1.4.8 in that we call a subspaceV �A invariant if it is invariant under the action ofH .

3.1.2 Definition. An invariant subspaceV is called anadmissible representationif the
complex vector spaceHK0.V /D V K

0

is finite-dimensional for allK 0 2 V . An automor-
phic form f 2 A is calledadmissibleif H .f / is admissible, or equivalently, if for all
K 0 2 V , HK0.f / is finite-dimensional. Theadmissible part ofV is the subrepresentation

Vadm D ff 2 V j f is admissibleg :

Theunramified part ofV is the subrepresentation

V nr
D H .V K/ :

If V nrD V , the representationV is calledunramified.

3.1.3 Note that subrepresentations and finite sums of admissible representations are ad-
missible. Thus every element of an admissible representation is admissible and

Vadm D
[

admissible
representationsW�V

W :

35
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Be aware that arbitrary unions of admissible representations are in general not admissible
asAadm is not.

Further we have an alternative description of the unramified part ofV ,

V nr
D

\
subrepresentations

W�V withWKDVK

W ;

which follows from the fact thatH .V K/ is contained in an invariant subspaceW �A if
W containsV K .

We make the following convention: If an invariant subspaceV � A is decorated by
more then one label, it is the intersection of the spaces with single label. For example,
V nr

admD Vadm\V
nr andAK

0;torDA0\Ator\AK .

3.1.4 Remark. There is a satisfactory theory of admissible representations. We add to it
the new terminology “admissible automorphic form” and “admissible part” for the follow-
ing reasons.

Although Aadm itself is not an admissible representation, it is a natural subspace of
A that has a decomposition as a direct sum of subrepresentations, for which we can give
explicit bases and the matrix form of Hecke operators relative to these bases. We will work
out a decomposition forAnr

adm from results in the literature.
We will show that the space of unramified toroidal automorphic forms is contained in

the admissible part and it inherits the decomposition. This allows us to investigate it part
by part. One may ask: is the space of all toroidal automorphic forms contained in the
admissible part?

From the theory in Chapter 6, it will follow that a positive answer would imply that the
space of toroidal automorphic forms is admissible. However, this implication does not hold
in the corresponding theory for number fields. There, the space of toroidal automorphic
forms is far from admissible. But it is still interesting to put the question: is the space of
toroidal automorphic forms for a number field contained in the admissible part?

3.1.5 One of the crucial observations in the representation theory ofGA is that every irre-
ducible admissible representation factors into a restricted tensor product of local represen-
tations. To this end, we recall what the restricted tensor of representations is, where—to
keep it simple—we restrict the discussion to unramified representations.

DefineGx DG.Fx/ andKx DG.Ox/. Choose for everyx 2 jX j aGx-representation
Vx and a non-zero vectorv0x 2 V

Kx
x . In particular,V Kx

x is nontrivial. For finite sets
S � jX j, defineVS as linear combinations of expressions of the form.vx/, wherevx 2 Vx
for x 2 S andvx D v0x for x 2 jX j �S , and which satisfy the relations for finite tensor
products. Then the restricted tensor product of allVx relative to.v0x/ is defined asO

x2jX j

0
Vx D

[
S�jX j finite

VS :

Note thatGA acts on
N0

Vx by .gx/:.vx/ WD .gxvx/ and that the isomorphism type ofN0
Vx as aGA-representation does not depend on the choice of.v0x/ since for a different

choice.w0x/, we obtain an isomorphism ofGA-representations by sending.vx/ to .vx �



3.1 Admissible representations 37

v0xCw
0
x/. We will not mention the vector.v0x/ anymore if we are only interested in the

isomorphism type of
N0

Vx .
An important question is: when is the restricted tensor product

N0
Vx an automorphic

representation, i.e. when is
N0

Vx isomorphic to a subquotient ofA? We will recall the
answer for one series of examples, namely, the principal series representations.

Let�x be a quasi-character ofF �
x , i.e. a continuous group homomorphismF �

x !C�.
Define theprincipal series representationPx.�x/ ofGx as the space of all locally constant
functionsf WGx! C such that for all

�
a b
d

�
2Gx and allg 2Gx ,

f
�0@a b

d

1Ag� D ˇ̌
ad�1

ˇ̌1=2
�x.ad

�1/f .g/ ;

together with the representation ofGx by right translation of the argument.
If now � 2 „0 is an unramified quasi-character ofA�, then the restriction of� to

F �
x � A� defines unramified quasi-characters�x W F �

x ! C�, i.e.�x is trivial on O�
x , for

everyx 2 jX j. In this case,Px.�x/ contains a unique rightKx-invariant vectorf 0x with
f 0x .e/D 1, and we can form the restricted tensor product

N0
Px.�x/ over allx 2 jX j with

respect to.f 0x /. Since� is trivial onF �, the restricted tensor product
N0

Px.�x/ is left
GF -invariant, and furthermore the mapN0

Px.�x/ �! P .�/

.fx/ 7�!
�
.gx/ 7!

Q
x2jX jfx.gx/

�
is an isomorphism ofGA-modules.

An Gx-representationVx is calledunramifiedif Vx D fg:v j g 2 Gx ;v 2 V
Kx
x g. In

particular,Px.�x/ is unramified if�x is unramified.

3.1.6 If Vx is aGx-representation for a placex, then the Hecke algebraH acts onVx by

ˆ.v/ D

Z
Gx

ˆ.j.h// h:v dh ;

whereˆ 2H , v 2 Vx andj WGx!GA is the canonical inclusion.

3.1.7 Theorem ([11, Thm. 3.3.3]).Let V �Anr
adm be an invariant subspace that is irre-

ducible. Then there exist irreducible unramifiedGx-representationsVx with dimV Kx
x D 1

for all x 2 jX j such thatV '
N0

Vx .

3.1.8 Theorem ([11, Thm. 4.6.4]).LetVx be an irreducibleGx-representation such that
V
Kx
x is finite-dimensional, but not trivial. Then there is an unramified quasi-character
�x W F

�
x !C� so that eitherVx 'Px.�x/ or Vx is 1-dimensional andg:vD �x.detg/ �v

for all g 2Gx andv 2 Vx .

3.1.9 Theorem ([11, Thm. 3.4.3]).LetV1 andV2 be irreducible subrepresentations ofA.
ThenV nr

1 ' V
nr
2 asH -modules if and only ifV K1 ' V

K
2 asHK-modules.

3.1.10 Lemma.For every irreducible representationV of H , the spaceV K is either0-
dimensional,1-dimensional, or infinite-dimensional.
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Proof. Theorem 3.1.9 implies thatV K is zero or irreducible asHK-module. SinceHK is
commutative, we can apply Schur’s lemma ([21, 1.7]), which says that every irreducible
finite-dimensionalHK-module is1-dimensional. Hence the proposition.�

3.1.11 Lemma 3.1.10 implies that theK-invariant subspace of an irreducible unramified
admissible representation is1-dimensional, and thus the basis vector is an eigenvector
for all ˆ 2 HK . We assume eigenvectors to be nontrivial. We call af 2 A an HK-
eigenfunction with eigencharacter�f if it is an eigenvector for everŷ 2HK with eigen-
value�f .ˆ/. Note that�f WHK ! C is a homomorphism ofC-algebras and thus indeed
an additive character.

3.2 HK-eigenfunctions

The article [41] of Li describes a decomposition of the space of theHK-eigenfunctions in
A. We state this result and a lemma that is the key for a generalisation of the theorem to
a decomposition of the admissible part. Recall the definition ofˆx for x 2 jX j as defined
in paragraph 1.4.2, and recall that we writeqx D qdegx .

3.2.1 Let theEisenstein partE be the vector space spanned by all Eisenstein series and
their derivatives, theresidual partR be the vector space spanned by the residues of Eisen-
stein series and their derivatives in the sense of paragraph 2.5.1, and thecuspidal partA0

be the space of cusp forms as defined in paragraph 1.5.9. We shall refer toeE WD E˚R as
thecompleted Eisenstein part. It follows from Theorem 3.2.2 that the sum is direct.

For� 2 C, andˆ 2HK , define thespace of̂ -eigenfunctions with eigenvalue�:

A.ˆ;�/ D ff 2A jˆ.f /D �f g ;

and for an invariant subspaceV �A, defineV.ˆ;�/D V \A.ˆ;�/.
Recall the definitions of the standard Borel subgroupB and its unipotent radicalN

from paragraph 1.5.7, and definerK0 D #
�
K=K 0.ZANABFq

\K/
�

for K 0 2 V .

3.2.2 Theorem (Li). Let� 2 C, x a place of degreedx andK 0 2 V . Then

A.ˆx ;�/
K0

D E.ˆx ;�/
K0

˚R.ˆx ;�/
K0

˚A0.ˆx ;�/
K0

and
dim eE.ˆx ;�/K0

D hF �degx � rK0 :

Proof. This is [41, Thm. 7.1], but one should note that Li uses different conventions to
those in this thesis. First of all, Li writes from right to left from our point of view, i.e.
GF operates from the right whileK and the Hecke algebra operate from the left. Thus,
elements ofGA need to be inverted.

Secondly, in [41], the family of Eisenstein series is multiplied with a certain polyno-
mial such that the poles get resolved and the residues lie within the new family. As a result,
no distinction between Eisenstein series and residues occurs. If one only considers the un-
ramified part asHK-module, there indeed is no difference between subrepresentations in



3.3 HK-eigenfunctions 39

the Eisenstein part and in the residual part, and they can be described as a continuous
family as will be seen in the following sections.�

3.2.3 Theorem.

(i) Let� 2„0 and�2 ¤ j j˙1. The Eisenstein seriesE. � ;�/ generates an admissible
representation ofH .

(ii) Let� 2„0 and�2 D j j˙1. The residueR. � ;�/ generates an admissible represen-
tation ofH .

(iii) Let f 2 AK
0 be anHK-eigenfunction. The cusp formf generates an admissible

representation ofH .

Proof. For (i), theH -module generated byE. � ;�/ is isomorphic toP .�/. By Proposition
2.3.4 everyf 2 P .�/ is determined by its values at elements ofK. If K 0 2 V , then the
index ofK 0 in K is finite and thusP .�/K

0

is finite dimensional.
Statement (ii) follows from Theorem 2.4.2.
Statement (iii) is [32, Prop. 10.5]. �

3.2.4 Corollary. If f 2A is unramified andH .f / is irreducible, thenf is admissible if
and only iff is anHK-eigenfunction. �

One may ask what happens if the condition thatH .f / is irreducible is dropped. The-
orem 3.6.2 below will give a complete description of unramified admissible automorphic
forms.

3.2.5 Lemma. LetV be a finite dimensional complex vector space andˆ WV !V a linear
map such that there exists no nontrivial decomposition ofV into ˆ-invariant subspaces.
Then there is precisely onê-invariant subspace ofV of every given dimension smaller
thendimV .

Proof. This is a consequence of the Jordan decomposition ([21, §9.3]):ˆ is the sum of a
diagonalisable linear map̂ss and a nilpotent linear map̂nil , which commute with each
other, and this decomposition is unique. Becauseˆss andˆnil commute and the images of
a non-zero vector under these two operators are linearly independent, a subspace ofV is
ˆ-invariant if and only if it isˆss- andˆnil-invariant, but sincê ss is diagonalisable, the
ˆss-invariance follows from thê nil-invariance.

The sequencê knil.V / for k � 0 is a filtration ofV whose subquotients have shrinking
dimension, and every sequence ofˆnil-invariant (orˆ-invariant) subspaces ofV must
be a subsequence. SinceV has no nontrivial decomposition intô-invariant subspaces,
all subquotients of this filtration are at most1-dimensional, and thus there is a unique
sequence of̂ -invariant subspaces whose dimensions increase by1. �

3.2.6 This lemma together with Theorem 3.2.2 implies that for everyx 2 jX j, the Hecke
operator̂ x decomposes the admissible part into a direct sum of subspaces that are the
(possibly infinite-dimensional) generalised eigenspaces of theˆx-eigenfunctions. In the
subsequent sections we shall investigate these generalised eigenspaces for the Eisenstein,
residual and cuspidal part, respectively, which will turn out to be independent of the choice
of x.
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3.3 The Eisenstein part

We give explicit formulas for the action ofHK on Eisenstein series and their derivatives.
They determine theHK-module structure of the spaces that are generated by these func-
tions.

3.3.1 In paragraph 2.3.7, we already saw that for� 2„0 with �2 ¤ j j˙1, there is a dis-
tinguished Eisenstein seriesE. � ;�;s/ D E. � ;f 0; s/, wheref 0 2P .�/ is the spherical
vector. Up to a constant multiple, these are the only unramified Eisenstein series. We
denote their derivatives in the sense of paragraph 2.5.1 byE.i/. � ;�;s/.

Define for all� 2„0, x 2 jX j andl � 0 the value

�.l/x .�/ WD q1=2x
�
��1.�x/C .�1/

l�.�x/
�
:

Note that the value of�.l/x .�/ only depends on the parity ofl . Define�x.�/D �
.l/
x .�/ if l

is even and��
x .�/D �

.l/
x .�/ if l is odd.

3.3.2 Lemma. If � 2„0 with �2 ¤ j j˙1, then for everyx 2 jX j,

ˆxE.g;�/ D �x.�/E.g;�/ :

Proof. SinceP .�/ is irreducible for�2 ¤ j j˙1, theK-invariants form a one-dimensional
subspace, cf. Proposition 3.1.10. Hence the spherical vectorf 0 2 P .�/ is aˆx-eigen-
function for everyx. The action of̂ x on unramified automorphic forms is described in
[23, §3 Lemma 3.7] or Proposition 4.2.4. With this, we derive

ˆxf
0.e/ D f 0.

�
1
�x

�
/C

X
b2�x

f 0.
�
�x b

1

�
/

D q1=2x ��1.�x/f
0.e/Cqx �q

�1=2
x �.�x/f

0.e/

D q1=2x
�
�.�x/C�

�1.�x/
�
f 0.e/

D �x.�/f
0.e/

whereeD
�
1
1

�
is the identity matrix. Since the Eisenstein series is a map ofH -modules,

E. � ;�/DE. � ;f 0/, has the same eigenvalue asf 0. �

3.3.3 Proposition. If � 2„0 with �2 ¤ j j˙1, then for everyx 2 jX j,

ˆxE
.i/.g;�/ D

iX
kD0

 
i

k

!�
lnqx

�i�k
�.i�k/x .�/E.k/.g;�/ :

Proof. Observe that

d

ds
�.l/x .� j j

s/ D .lnqx/�
.lC1/
x .� j js/ :

The formula is obtained by taking derivatives on both sides of the equation in Lemma 3.3.2
and applying the Leibniz rule to the right hand side.�
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3.3.4 Lemma. Let� 2„0. Then�2 D 1 if and only if��
x .�/ vanishes for all placesx.

Proof. Observe that for every�x , we have

q�1=2
x ��

x .�/D �
�1.�x/��.�x/D 0 ” �.�x/D �

�1.�x/ ” �2.�x/D 1 :

Since the�x ’s generateF � nA� =O�
A , the quasi-character� is determined by its values

on the�x ’s. �

3.3.5 Proposition. Let� 2„0 with �2 … f1; j j˙1g. Then˚
E. � ;�/; E.1/. � ;�/; E.2/. � ;�/; : : :

	
is linearly independent and spans a vector space on whichHK acts. In particular none of
these functions vanishes.

Proof. By Proposition 3.3.3, it is clear that the span of the functions is anHK-module.
We do induction onnD #

˚
E. � ;�/;E.1/. � ;�/; : : : ;E.n�1/. � ;�/

	
.

The casenD 1 is established in Proposition 2.3.18.
Forn > 1, assume that there exists a relation

E.n/. � ;�/ D cn�1E
.n�1/. � ;�/C : : :C c0E. � ;�/ :

We derive a contradiction as follows. For every placex, we have on the one hand,

ˆxE
.n/. � ;�/ D cn�1ˆxE

.n�1/. � ;�/C : : :C c0ˆxE. � ;�/

D
3:3:3

cn�1�x.�/E
.n�1/. � ;�/ C

�
terms in lower derivatives ofE. � ;�/

�
;

and on the other hand,

ˆxE
.n/. � ;�/ D

3:3:3
�x.�/E

.n/. � ;�/Cn.lnqx/�
�
x .�/E

.n�1/. � ;�/ C
�
lower terms

�
D

�
cn�1�x.�/Cn.lnqx/�

�
x .�/

�
E.n�1/. � ;�/ C

�
lower terms

�
:

By the induction hypothesis,̊E. � ;�/;E.1/. � ;�/; : : : ;E.n�1/. � ;�/
	

is linearly indepen-
dent, and therefore

cn�1�x.�/ D cn�1�x.�/Cn.lnqx/�
�
x .�/ ;

which implies that��
x .�/D 0 for every placex. But this contradicts Lemma 3.3.4. �

3.3.6 Corollary. Let� 2„0 with �2 ¤ j j˙1. Then the following are equivalent.

(i) �2 D 1.

(ii) ��
x .�/ vanishes for all placesx.

(iii) E.1/. � ;�/ is anHK-eigenfunction or trivial.

Proof. The equivalence of (i) and (ii) is Lemma 3.3.4. For the equivalence of (ii) and
(iii), note that since the elementŝx for x 2 jX j generateHK , the functionE.1/. � ;�/ is
an HK-eigenfunction if and only if it is an eigenfunction of̂x for all x 2 jX j. But by
Proposition 3.3.3, this only happens if��

x .�/ vanishes for allx 2 jX j. �
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3.3.7 Lemma. Let� 2„0 such that�2 D 1. Then

E.1/. � ;�/ D .lnq/ .2gF �2/ E. � ;�/ :

Proof. Since�2 D 1, the functional equation looks like

E.g;�;s/ D jcj2s E.g;�;�s/ :

Usingjcj D q�.2gF �2/ and taking derivatives ins of both sides yields

E.1/.g;�;s/ D � jcj2s E.1/.g;�;�s/ C 2 .lnq/ .2gF �2/ jcj
2s E.g;�;�s/ ;

and filling in s D 0 results in the desired equation.�

3.3.8 Proposition. Let� 2„0 with �2 D 1. Both˚
E. � ;�/; E.2/. � ;�/; E.4/. � ;�/; : : :

	
and

˚
E.1/. � ;�/; E.3/. � ;�/; E.5/. � ;�/; : : :

	
span a vector space on whichHK acts. IfgF ¤ 1, then both are linearly independent, but
they span the same space. IfgF D 1, then the former set is linearly independent and all
functions in the latter set vanish.

Proof. That both sets spanHK-modules follows from Proposition 3.3.3 since by Corollary
3.3.6, for allx 2 jX j, the value��

x .�/ vanishes.
The linear independence of the former set can be shown by the same calculation as in

the proof of Proposition 3.3.5, provided one knows that�x.�/¤ 0 for somex 2 jX j. This
holds since otherwise

0 D �x.�/ � �
�
x .�/ D 2qx �.�x/

for all x 2 jX j, which contradicts the nature of�.
If gF ¤ 1, then Lemma 3.3.7 implies thatE.1/. � ;�/ is a non-vanishing multiple of

E. � ;�/ and spans thus the same vector space asE. � ;�/. Consequently the latter set in the
Proposition is linearly independent for the same reasons as for the former set. By Lemma
3.2.5, the two sets in question generate the same space.

If gF D 1, the vanishing of allE.i/. � ;�/ for oddi follows from thei -th derivative of
the functional equation ats D 0, which looks like

E.i/. � ;�/ D .�1/i E.i/. � ;�/ C .2gF �2/„ ƒ‚ …
D 0

.terms in lower derivatives/ : �

3.4 The residual part

The HK-module structure of the spaces generated by residues of Eisenstein series and
their derivatives behaves completely analogous to the case of Eisenstein series. We extend
the results of previous section to those quasi-characters at which the Eisenstein series have
their poles.
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3.4.1 Recall from paragraph 2.4.1 that for� D ! j j˙1=2 2 „0 with !2 D 1, there is the
residue of an Eisenstein series

R. � ;�/ D lim
s!0

s �E. � ;�;s/ :

It is a non-vanishing function. More precisely, by Theorem 2.4.2, it is a multiple of! ıdet.
We denote the derivatives in the sense of paragraph 2.5.1 byR.i/. � ;�/.

Recall the definition of�x.�/, ��
x .�/ and�.l/x .�/ form paragraph 3.3.1.

3.4.2 Lemma. If �D ! j j˙1=2 2„0 with!2 D 1, then for everyx 2 jX j,

ˆxR.g;�/ D �x.�/R.g;�/ D !.�x/.qxC1/R.g;�/ :

Proof. We make use of the corresponding result for Eisenstein series (Lemma 3.3.2). Note
thatE. � ;�;s/DE. � ;� j js/ if �2 j j2s ¤ j j˙1. Since the Hecke operator only manipulates
the first argument ofR, it commutes with the variation ins. We calculate for any placex:

ˆxR. � ;�/ D lim
s!0

s �ˆxE. � ;�;s/ D lim
s!0

s ��x.� j j
s/E. � ;�;s/

D lim
s!0

�x.� j j
s/ lim
s!0

s �E. � ;�;s/ D �x.�/R.g;�/ :

The second equality in the lemma follows from the fact that� D ! j j˙1=2 and from the
fact that!.�x/D !�1.�x/D˙1. �

3.4.3 Lemma. Let� 2„0 with �2 D j j˙1. Then��
x .�/¤ 0 for all x 2 jX j.

Proof. For everyx 2 jX j, 1¤ q˙1
x , so

��
x .�/ D q1=2x

�
��1.�x/��.�x/

�
D q1=2x �.�x/.j�xj

˙1
�1/ ¤ 0 : �

3.4.4 Proposition. If � 2„0 with �2 D j j˙1, then

ˆxR
.i/.g;�/ D

iX
kD0

 
i

k

!�
lnqx

�i�k
�.i�k/x .�/R.k/.g;�/

for everyx 2 jX j, where�.l/x .�/ are defined as in Proposition 3.3.3.

Proof. The proof is the same as for Proposition 3.3.3. Note that the functions �E. � ;�/

is holomorphic ats D 0, so the limit in the definition of the residue and the limit in the
definition of the derivative with regard tos commute. �

3.4.5 Corollary. Let� 2„0 with �2 D j j˙1. ThenR.1/. � ;�/ is not an eigenfunction of
ˆx for anyx 2 jX j. �

3.4.6 Proposition. Let� 2„0 with �2 D j j˙1. Then˚
R. � ;�/;R.1/. � ;�/;R.2/. � ;�/; : : :

	
is linearly independent and spans a vector space on whichHK acts. In particular none of
these functions vanishes.

Proof. The proof is completely analogous to that of Proposition 3.3.5. Lemma 3.4.3 en-
sures us of the fact that��

x .�/¤ 0 for somex 2 jX j. �
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3.5 The cuspidal part

We collect some general facts about the cuspidal part.

3.5.1 Theorem ([26, Cor. 1.2.3]).For everyK 0 2 V , there exists a leftGFZA and right
K 0-invariant subset� � GA such thatGFZA n�=K

0 is finite and for everyf 2 AK0

0 ,
suppf ��.

3.5.2 Theorem ([11, Section 3.3]).For everyK 0 2V , AK0

0 decomposes into a finite direct
sum of irreducibleHK0 -modules.

3.5.3 Theorem (Multiplicity one, [11, Thm. 3.3.6]).
If V1;V2 �A0 are isomorphicH -modules, thenV1 D V2.

3.5.4 Corollary. AK
0 admits a finite basis ofHK-eigenfunctions, which is unique up to

multiples of the basis vectors. �

3.6 Main theorem on admissible automorphic forms

We summarise the discussion as follows.

3.6.1 For� 2„0, define

QE.i/. � ;�/ D

�
E.i/. � ;�/ if �2 … f1; j j˙1g;

R.i/. � ;�/ if �2 D j j˙1 ;

E.2i/. � ;�/ if �2 D 1:

and QE. � ;�/D QE.0/. � ;�/. LeteE.�/K �eE D E˚R be the span off QE.i/. � ;�/gi�0.
Note that by the functional equations for Eisenstein series and their residues, the linear

spaces spanned by the set˚
QE.0/. � ;�/; : : : ; QE.n/. � ;�/

	
and

˚
QE.0/. � ;��1/; : : : ; QE.n/. � ;��1/

	
are the same for all� 2„0. In particular,eE.�/K DeE.��1/K .

3.6.2 Theorem.The unramified vectors of the admissible part ofA decompose as an
HK-module into

AK
adm D AK

0 ˚

M
f�;��1g�„0

eE.�/K :
The finite-dimensional vector spaceAK

0 admits a basis ofHK-eigenfunctions, and thus
every Hecke operators acts as a diagonal matrix on this basis. For every� 2 „0 and
n� 0, f QE. � ;�/; : : : QE.n�1/. � ;�/g is a basis of the uniqueHK-submodule of dimensionn
in eE.�/K . For everyx 2 jX j, the Hecke operator̂ x acts as follows in this basis:
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� if �2 ¤ 1,

ˆx D

0BBBBBBBBBBBBBBBBBBB@

�x.�/
�
1
1

�
.lnqx/��

x .�/ � � �
�
n
n

�
.lnqx/n�

.n/
x .�/

0
: : :

: : :
:::

:::
: : : �x.�/

�
n
1

�
.lnqx/��

x .�/

0 � � � 0 �x.�/

1CCCCCCCCCCCCCCCCCCCA

� if �2 D 1,

ˆx D

0BBBBBBBBBBBBBBBBBBB@

�x.�/
�
2
2

�
.lnqx/2�x.�/ � � �

�
2n
2n

�
.lnqx/2n�x.�/

0
: : :

: : :
:::

:::
: : : �x.�/

�
2n
2

�
.lnqx/�x.�/

0 � � � 0 �x.�/

1CCCCCCCCCCCCCCCCCCCA

Proof. From Theorem 2.3.3, it follows that there is no other linear relation of Eisenstein
series than the one that is given by the functional equation. Thus the direct sum in the
theorem is well-defined as subspace ofAK

adm.
Propositions 3.3.3 and 3.4.4 imply that for every� 2„0,eE.�/K is anHK-module and

thatˆx operates as described in the theorem. Propositions 3.3.5, 3.4.6 and 3.3.8 ensure
that the described bases are indeed linearly independent.

Lemma 3.2.5 proves the uniqueness of then-dimensional subspaces in the theorem
and furthermore thatf QE.i/. � ;�/gf�;��1g�„0;i�0

is linearly independent. Finally, it fol-
lows from Propositions 3.3.5, 3.4.6 and 3.3.8 together with Theorem 3.2.2 that the decom-
position exhaustsAK

adm. �

3.6.3 Theorem.LetV �Anr be an invariant subspace. Then

V K D .V \AK
0 / ˚

M
f�;��1g�„0

.V \ eE.�/K/ :
The representationV is admissible if and only ifV K is finite dimensional.

Proof. Note that every irreducible subrepresentationAnr
adm is determined by its isomor-

phism class. The subrepresentations ofAnr
0 are characterised by the vanishing of the con-

stant terms of all its elements and uniquely determined by their isomorphism type by The-
orem 3.5.3. The subrepresentations ofRnr are1-dimensional and uniquely determined by
their isomorphism type by Corollary 2.4.3. The subrepresentations ofEnr uniquely deter-
mined by their isomorphism type by Theorem 2.3.3. By Theorem 3.1.9 every irreducible
subrepresentationAK

adm is thus determined by its isomorphism class asHK-representation.
SinceV K decomposes into a direct sum of simultaneous generalised eigenspaces of ele-
ments ofHK , this yields the claimed decomposition.

The latter statement follows from the decomposition together with Theorem 3.2.3.�
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3.7 Eigencharacters

If f 2 AK is anHK-eigenfunction with eigencharacter�f , then Theorem 3.1.9 implies
thatf is determined by�f . As HK is generated by elements of the form̂x and those
that act trivially onA, cf. Lemma 1.4.15, it suffices to know the values�f .ˆx/. In fact,
we will describe a finite set of places such thatf is determined by�f .ˆx/ for those places
x.

3.7.1 SinceAK
0 is finite dimensional, there are only finitely many Hecke operators nec-

essary to distinguish the generatingHK-eigenfunctions. The support of cusp forms is
contained in a bounded set and we shall see in Section 5.5 how to make use of this to
distinguish cusp forms from Eisenstein series.

So we may concentrate oneEK . TheHK-eigenfunctions ineEK are parametrised by
„0, and„0 is identified with quasi-characters on ClF D F � nA� =O�

A , so� 2 „0 can
be seen as a group homomorphism ClF ! C�. For x 2 jX j, we define�.x/ D �.�x/
thinking of places as prime divisors. All expressions of the formhDi for a divisorD will
be considered as the subgroup of ClF generated by the divisor class ofD.

Now consider theHK-eigenfunctionf D QE. � ;�/ with eigencharacter�f . We have
�f .ˆx/ D �x.�/ for everyx 2 jX j and�x can be seen as a function„0 ! C. Fur-
thermore,�x factors intolx ı evx , where evx W „0 ! C� is the group homomorphism
� 7! �.x/ andlx WC�!C is defined byz 7! q

1=2
x .zCz�1/. We will determine the fibres

of �x by looking at the fibres of the factors evx andlx .

3.7.2 Lemma. Letz 2 C�, x 2 jX j ands 2 C such thatq�s
x D z. Then

ev�1
x .z/ D f! j j

s
j ! 2„0; with!.x/D 1g :

In particular, #.kerevx/ D hF dx .

Proof. Sincej js 2 ev�1
x .z/, we have that ev�1x .z/D kerevx � j j

s. The kernel of evx are all
� 2„0 with �.x/D 1, and these are nothing else but the characters of ClF =hxi, and this
group is an extension of Cl0F by a finite group of orderdx D degx. �

3.7.3 Lemma. The maplx W C� ! C is a rational map that is a double cover ramified
exactly oveṙ 1. Its fibres are of the formfz;z�1g.

Proof. Rationality is clear from the definition. By defining

lx.0/ D lim
z!0

q
1=2
x .zCz�1/ D 1 ; and

lx.1/ D lim
z!1

q
1=2
x .zCz�1/ D 1 ;

the maplx extends to a rational maplx W P1.C/! P1.C/. Now, lx is ramified if and only
if d
dz
lx.z/ vanishes. Since

lim
z!1

d

dz
q1=2x .zC z�1/ D lim

z!1
q1=2x .1�z�2/ D q1=2xj

¤ 0 ;
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lx is not ramified above1, and since it has a fibre of cardinality2 above1, lx is a2 W 1-
covering. Forz 2 C, q1=2xi

.1� z�2/ vanishes precisely whenz D ˙1. The form of the
fibres is now clear since they cannot be larger by the preceding.�

3.7.4 Lemma. Letx 2 jX j and� 2„0. Then the following are equivalent.
(i) �.x/D˙1.

(ii) � factors through the finite groupClF =h2xi.

(iii) evx.�/D evx.��1/.

(iv) lx ramifies inevx.�/.

(v) �x.�/2 D 4qx .

(vi) QE.1/. � ;�/ is an eigenfunction of̂ x .

Proof. The equivalence of (i), (ii) and (iii) is obvious, the equivalence of (i) and (iv) fol-
lows from Lemma 3.7.3. For the equivalence with (v), one calculates

�x.�/
2
D
�
�.x/�1C�.x/

�2
qx

and�.x/�1C�.x/D˙2 if and only if �.x/D˙1. Regarding (vi), observe that Proposi-
tion 3.3.3 and Corollary 3.4.5 imply thatE.1/. � ;�/ is an eigenfunction of̂ x if and only
if ��

x .�/D 0. But since��
x .�/D q

1=2
x

�
evx.��1/�evx.�/

�
, this is equivalent to (iii). �

3.7.5 Let S � jX j be a set of places, finite or infinite, and define

ƒS W „0 �!
Q
x2S

C

� 7�!
�
�x.�/

�
x2S

If a fibre ofƒS contains a quasi-character�, then it contains also��1 since the fibres
of every�x do so. The question as to whether the Hecke operatorsˆx with x 2 S can
separate functions ineEK is equivalent to asking whether the non-empty fibres ofƒS are
not larger thanf�;��1g.

Define EvS D .evx/x2S and consider the commutative diagram:Q
x2S

C� .lx/x2S //

��
��
��

����
��
��
��
��
��
�

Q
x2S

C

prx

����
��
��
��
��
��
��
��
��
��

„0

EvS

;;xxxxxxx ƒS //

evx

��

imƒS
- 


;;wwwwwwww

prx

��
C�

lx // C

The map EvS has kernel

kerEvS D

\
x2S

kerevx ;
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which is trivial if and only if the classes of the places inS generate ClF D F � nA� =O�
A .

Since all elements that differ by an element in the kernel of EvS lie in the same fibre of
.lx/x2S ıEvS , and therefore in the same fibre ofƒS , this shows thatS should at least
generate ClF for ƒS to have small fibres.

Define
CS 0.�/ D h2xix2S 0 =

�
ker� \h2xix2S 0

�
for S 0 � S and� 2„0, whereh2xix2S 0 is considered as subgroup of ClF .

3.7.6 Theorem.LetS be a set of places that generatesClF and let� 2„0. The fibre of
ƒS .�/ is

˚
�0
2 „0

ˇ̌̌̌
ˇ̌ There is a partitionS D SC[S� such that
�0.x/D �.x/

�0.x/D ��1.x/

for x 2 SC and
for x 2 S�:

	
:

It equalsf�;��1g unless if there is a partitionS D SC[S� such that

CS .�/ D CSC
.�/ ˚ CS�

.�/

is a direct sum with nontrivial factors. This can only happen when� is of finite order.

Proof. Since the kernel of EvS is trivial, this means that�0 is in the same fibre ofƒS as�
if and only if for eachx 2 S ,

�0.x/D �.x/; or �0.x/D ��1.x/:

This allows us to choose a partitionS D SC[S� such that�0.x/D �.x/ if x 2 SC and
�0.x/D ��1.x/ if x 2 S�. Thus the first statement.

We are left to prove that if there exists a�0 in the fibre of� that neither equals� nor
��1, thenCS DCSC

˚CS�
is a nontrivial decomposition and� is of finite order. Observe

that for such a�0, neitherSC norS� is empty.
Define for everyS 0 � S the subgroupHS 0 D hxix2S 0 of HS D ClF . Then, restricted

toHSC
, we have�0 D �, and restricted toHS�

, we have�0 D ��1. Hence�2 is trivial on
HSC

\HS�
, or in other words,HSC

\HS�
� ker�2. SinceHSC

[HS�
generatesHS ,

we obtain a decomposition�
HS =.ker�2\HS /

�
D

�
HSC

=.ker�2\HSC
/
�
˚

�
HS�

=.ker�2\HS�
/
�
:

Observe that the assignmenth 7! h2, induces an isomorphism

HS 0 =.ker�2\HS 0/
�
�! 2HS 0 =.ker�\2HS 0/ D CS 0.�/ :

for every subsetS 0 � S . Thus we have the decomposition

CS .�/ D CSC
.�/ ˚ CS�

.�/ :

On the other hand, each such decomposition that is nontrivial allows us to choose a�0

as above which neither equals� nor��1. Then the fibre ofƒS .�/ contains more than2
elements.

Finally note thatHSC
\HS�

has finite index in ClF . Hence�2 is of finite order, and
so is�. �
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3.7.7 Corollary. LetS � jX j generateClF . Then for� 2„0 the following are equiva-
lent.

(i) �D ��1.

(ii) The fibre ofƒS .�/ contains only�.

(iii) lx ramifies inevx.�/ for everyx 2 S .

(iv) �x.�/D 2q
1=2
x �.x/ for everyx 2 S .

(v) QE.1/. � ;�/ is anHK-eigenfunction or trivial.

Proof. Observe that if�D ��1, the fibres described in the theorem contain only�D ��1.
The equivalence of (i) and (ii) follows.

The equivalence of (i) and (iii) follows from Lemma 3.7.4, bearing in mind that� is
determined by its values at allx 2 S .

The implication from (i) to (iv) follows by the definition of�x.�/. The converse
implication follows from the theorem.

The equivalence of (i) and (v) follows from Corollary 3.3.6.�

3.7.8 Corollary. Let S � jX j generateClF and let� 2 „0. Then QE. � ;�/ 2 R if and
only if there is a! 2„0 with !2 D 1 such that for allx 2 S , �x.�/D !.�x/.qxC1/. In
this case,�D ! j j˙1=2.

Proof. If QE. � ;�/ lies in the residual part, then there is an! 2„0 with !2 D 1 such that
�D ! j j˙1, and Lemma 3.4.2 describes the eigenvalues of residues as desired.

For the converse implication, note that if�0 2 „0 is of finite order, then im�0 � S1,
and�0�1.x/ is the complex conjugate of�0.x/. Thus

�x.�
0/D q1=2x

�
�0�1.x/C�0.x/

�
2 Œ�2q1=2x ;2q1=2x � :

But qx > 1, henceqxC1 > 2q
1=2
x and�, which by assumption hasj�x.�/j D qxC1,

is not of finite order. Thus by Theorem 3.7.6 the fibre of�x.�/ contains only! j j1=2. �

3.7.9 Proposition. If fx1; : : : ;xhF
g � jX j represents the divisor classes of a fixed degree

d , then we have for� 2„0 that

.ˆx1
C : : :CˆxhF

/ QE. � ;�/D

�
qd=2hF .q

dsCq�ds/ QE. � ;�/ if �D j js for a s 2 C;
0 otherwise.

Proof. We choose an idelea of degree1, and write�D ! j js with !.a/D 1. Then

hFX
iD1

�xi
.�/D

hFX
iD1

q1=2xi

�
��1.�xi

/C�.�xi
/
�

D qd=2
� hX
iD1

!�1.a�d�xi
/
ˇ̌
�xi

ˇ̌�s
C

hFX
iD1

!�1.a�d�xi
/
ˇ̌
�xi

ˇ̌s�
D

�
qd=2hF .q

dsCq�ds/ if ! D 1;
0 otherwise.

The last equation follows from the general fact that for a charactere! of a finite groupeG,P
g2eGe!.g/ equals #eG if e! is trivial and equals0 otherwise. �
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3.7.10 The rest of this chapter is devoted to a description of finite setsS � jX j such
that the corresponding Hecke operators are able to distinguishHK-eigenfunctions in the
completed Eisenstein part. The fibres of Theorem 3.7.6 that are larger thanf�;��1g for
some� 2„0 can be prevented ifS generates ClF and satisfies the property:

For every partitionS D SC [ S�; either2ClF D 2hSCi or 2ClF D 2hS�i: (�)

We need some group theoretic preparation.

3.7.11 Lemma.LetH be an finite abelian group. Then for every partitionH D SC[S�

there is either anxC 2 SC such that

2H D 2hSC�fxCgi

or anx� 2 S� such that
2H D 2hS��fx�gi :

Proof. The structure theorem for finite abelian groups states thatH is isomorphic to a
product of cyclic groups of prime power order, which is unique up to permutation of the
components. In particular the numbern of cyclic factors is an invariant ofH . We will do
induction onn.

If nD 0, note that the trivial group satisfies the lemma for trivial reasons.
If n > 0,H is isomorphic toH 0� .Z=mZ/ for some integerm� 2 and some subgroup

H 0, which hasn� 1 factors, which we assume to satisfy the lemma. Ifm D 2, then
2H D 2H 0 and the induction step is established. Ifm > 2, note thatZ=mZ has at least
two generators, namely,1 and�1. EitherSC or S� must contain elements that satisfy the
lemma forH 0�f0g, saySC does so with respect to somexC 2 SC.

If SC further contains an element ofH 0�f˙1g, then2H D 2hSC�fxCgi becauseH
is generated by the union ofH 0 with an arbitrary element ofH 0�f˙1g.

If not, thenH 0�f˙1g � S�. In both cases thatH 0 is trivial and thatH 0 is not trivial,
one sees thatH 0�f˙1gwith one element excluded generatesH , what in particular implies
the assertion of the lemma. Thus we have completed the induction.�

3.7.12 Remark.Jakub Byszewski found the following alternative proof of Lemma 3.7.11.
First observe that it holds for trivial reasons for the groupsZ=2Z and.Z=2Z/� .Z=2Z/.
For all other groups it follows from the following more general lemma.

3.7.13 Lemma.LetH be a finite group (not necessarily abelian) that is not isomorphic
to Z=2Z or .Z=2Z/� .Z=2Z/. LetH D S1[S2 be a partition. Then there exists either
anx1 2 S1 such thatH D hS1�fx1gi or anx2 2 S2 such thatH D hS2�fx2gi.

Note that bothZ=2Z and.Z=2Z/� .Z=2Z/ do not satisfy the lemma if partitioned into
subsets of equal cardinality.

Proof. The majority of cases is excluded by the observation that a subsetS of cardinality
#S > 1

2
#H necessarily generatesH by Lagrange’s theorem. There are only three cases

left, which we will consider separately. Without loss of generality, we may assume that
#S1 � #S2.
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Case (i): #H D 2nC1 is odd and#S1 D nC1.
Since2 is not a divisor of the group order, the largest possible subgroup has1

3
#H elements.

If n D #S1 � 1 > 1
3
#H , then the lemma holds by Lagrange’s theorem. If not, thenn �

2nC1
3

. This is the case if and only ifn � 1, which in turn means that #H � 3. If H
has1 element, then the lemma follows trivially. IfH has3 elements, thenS1 contains2
elements, one of which generatesH .

Case (ii): #H D 2n is even and#S1 D nC1.
If there is anx1 2 S1 such thatH 0 D S1�fx1g is precisely a subgroup of index2 in H ,
thenS1 has to contain the neutral elemente 2 H . But S1�feg is not contained in any
proper subgroup ofH .

Case (iii): #H D 2n is even and#S1 D #S2 D n.
Without loss of generality we may assume thate 2 S2. ThenS1 cannot be contained in a
proper subgroup and must generateH . If there is anx0 2 S1 such thatS1�fx0g generates
a subgroupH0 of index 2 in H , thenH0 D .S1�fx0g/[feg by counting elements. If
further n D #H0 � 3, then there would be anx1 2 S1 � fx0g � H0 such that we have
H0 D hS1�fx0;x1gi. But thenH D hS1�fx1gi. There are only two possibilities left:
nD #S1 D 1 or nD #S1 D 2. If nD 1, thenH ' Z=2Z, which we excluded. IfnD 2,
then eitherH ' .Z=2Z/�.Z=2Z/, which we excluded, orH ' Z=4Z, generated by some
elementa 2H . In the latter caseS2 is the unique subgroupfe;a2g, thusS1D fa;a3g. But
botha anda3 generateH . �

3.7.14 Proposition. If Cld F D SC [ S�, then as subsets ofClF , either 2hCld F i D
2hSCi or 2hCld F i D 2hS�i.

Proof. If d D 0, then the proposition follows immediately from the last lemma. Assume
d ¤ 0. Choosing az0 2 Cld F , we obtain a bijection Cld F ! Cl0F by subtractingz0.
This induces a partition Cl0F D S 0

C[S
0
�. By possibly exchangingSC andS�, the lemma

implies that there is az0
C 2 S

0
C such that2Cl0F D 2hS 0

C�fz
0
Cgi. If zC D z

0
CC z0, then

2Cl0F ˚2hzCi D 2hCld F i. �

A field extensionE=F is calledgeometricif the constant field ofE has the same num-
ber of elements as the constant field ofF . The following is a consequence of Chebotarev’s
density theorem.

3.7.15 Theorem ([55, Thm. 9.13B]).LetE=F be a finite abelian separable geometric
field extension andNE=F W ClE ! ClF the norm ofE overF extended to the divisor
class group. Then for every element inClF =NE=F .ClE/, there is an integerd0 such that
for everyd � d0, there is a prime divisor overF of degreed that represents this element.

3.7.16 Theorem.There is an integerd0 such that every divisor class inClF of degree
larger thand0 is represented by a prime divisor.

Proof. Let D denote a divisor class of degree1. Then by class field theory, there is an
finite abelian separable geometric field extensionE=F with Galois group ClF =hDi, and
everything follows from Theorem 3.7.15. �

3.7.17 We can now choose a set of generatorsS with property (�) as follows. Begin with
a finite set of generators of ClF and add places that represent Cld F such thatd is coprime
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to the degree of each of the previously chosen generators. Theorem 3.7.16 ensures us of
the fact that there are such places providedd is large enough.

This setS satisfies (�) because for every partitionS D SC[S�, one of both2hSCi and
2hS�i contains2hCld i, say2hSCi does. IfSC further contains any other other element of
S , then2ClF D 2hSCi, otherwiseS� generates ClF . This establishes (�).

3.7.18 If F is a rational function field, then ClF ' Z. Let x be a place of degree1.
Thenfxg generates ClF , and obviously it fulfills (�). Thus it suffices to calculate only the
ˆx-eigenvalue to recognise anHK-eigenfunction in the completed Eisenstein part.

If F is the function field of an elliptic curve, then the set of all places of degree1, which
represent precisely Cl1F , generates ClF . Proposition 3.7.14 implies that (�) holds. This
makes it possible to distinguish theHK-eigenfunctions in the completed Eisenstein part
by the action of the Hecke operatorŝx wherex varies through the degree one places. We
will see in Chapter 8, however, that these Hecke operators cannot distinguish cusp forms,
and it will be necessary to consider the operatorsˆx for placesx of degree2.



CHAPTER 4

Graphs of Hecke operators

To each Hecke operator we associate a certain graph with extra structure that
will be one of the main tools for the theory of toroidal automorphic forms. Au-
tomorphic forms can be reinterpreted as functions on the vertices, and the edges
together with a weight function symbolise the action of the Hecke operator on
automorphic forms. We investigate the graphs associated to generators of the
unramified Hecke algebra in more detail and apply the theory of Bruhat-Tits
trees to these graphs.

4.1 Definition

Let G D GL2 andK 0 � GA be a compact and open subgroup. We will writeŒg� 2
GFZA nGA =K

0 for the class that is represented byg 2 GA . Other cosets will also oc-
cur but it will be clear from the context what kind of class the square brackets relate to.

4.1.1 Proposition. For all ˆ 2HK0 and Œg� 2 GFZA nGA =K
0, there is a unique set of

pairwise distinct classesŒg1�; : : : ; Œgr � 2 GFZA nGA =K
0 and numbersm1; : : : ;mr 2 C�

such that for allf 2AK0

,

ˆ.f /.g/ D

rX
iD1

mif .gi / :

Proof. Uniqueness is clear, and existence follows from Lemma 1.4.11 after we have taken
care of putting together values off in same classes ofGFZA nGA =K

0 and throwing out
zero terms. �

4.1.2 Definition. With the notation of the preceding proposition we define

Uˆ;K0.Œg�/D f.Œg�; Œgi �;mi /giD1;:::;r :

The classesŒgi � are called thê -neighbours ofŒg� (relative toK 0).
ThegraphGˆ;K0 ofˆ (relative toK 0) consists of vertices

Vert Gˆ;K0 D GFZA nGA =K
0

53
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and oriented weighted edges

EdgeGˆ;K0 D

[
v2Vert Gˆ;K0

Uˆ;K0.v/ :

4.1.3 Remark. The usual notation for an edge in a graph with weighted edges consists of
pairs that code the origin and the terminus, and an additional function on the set of edges
that gives the weight. For our purposes, it is more convenient to replace the set of edges
by the graph of the weight function and to call the resulting tripels that consist of origin,
terminus and the weight the edges ofGˆ;K0 .

4.1.4 We make the following drawing conventions to illustrate the graph of a Hecke op-
erator: vertices are represented by labelled dots, and an edge.v;v0;m/ together with its
origin v and its terminusv0 is drawn as

v v′

m

If there is precisely one edge fromv to v0 and precisely one fromv0 to v, which we call the
inverse edge, we draw

in place of and in place of .
v

m
v′

m′

v′m′

m

v v
m

v

m

4.1.5 By the very definition of the graph of̂, we have forf 2AK0

andŒg�2GFZA nGA =K
0

that
ˆ.f /.g/D

X
.Œg�;Œg0�;m0/
2EdgeGˆ;K0

m0f .g0/ :

Hence one can read off the effect of a Hecke operator on the value of an automorphic
function from the illustration of the graph:

[g]

[gr]

[g1]

mr

m1

4.1.6 We collect some first properties: SinceH D
S

HK0 , withK 0 running over all com-
pact opens inGA , the notion of the graph of a Hecke operator applies to anyˆ 2H .

The set of vertices of the graph of a Hecke operatorˆ 2HK0 only depends onK 0, and
only the edges depend on the particular chosenˆ. There is at most one edge for each two
vertices and each direction, and the weight of an edge is always non-zero. Each vertex is
connected with only finitely many other vertices.

The algebra structure ofHK0 has the following implications for the structure of the set
of edges. We define the empty sum as0.
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4.1.7 Proposition. For the zero element0 2 HK0 , the multiplicative unit1 2 HK0 , and
arbitrary ˆ1;ˆ2 2HK0 , r 2 C� we obtain that

EdgeG0;K0 D ; ;

EdgeG1;K0 D
˚
.v;v;1/

	
v2Vert G1;K0

;

EdgeGˆ1Cˆ2;K0 D
˚
.v;v0;m/

ˇ̌
m D

X
.v;v0;m0/2EdgeGˆ1;K0

m0
C

X
.v;v0;m00/2EdgeGˆ2;K0

m00
¤ 0

	
;

EdgeGrˆ1;K0 D
˚
.v;v0; rm/

ˇ̌
.v;v0;m/ 2 EdgeGˆ1;K0

	
; and

EdgeGˆ1�ˆ2;K0 D
˚
.v;v0;m/

ˇ̌
m D

X
.v;v00;m0/2EdgeGˆ1;K0

and
.v00;v0;m00/2EdgeGˆ2;K0

m0
�m00
¤ 0

	
:

If K 00 <K 0 andˆ 2HK0 , then alsô 2HK00 . This implies that we have a canonical map
P W Gˆ;K00 ! Gˆ;K0 , which is given by

Vert Gˆ;K00 DGFZA nGA =K
00

P
�! GFZA nGA =K

0 D Vert Gˆ;K0

and

EdgeGˆ;K00

P
�! EdgeGˆ;K0 :

.v;v0;m0/ 7�! .P.v/;P.v0/;m0/

4.1.8 One can also collect the data ofGˆ;K0 in an infinite-dimensional matrixMˆ;K0 ,
which we callthe matrix associated toGˆ;K0 , by putting.Mˆ;K0/v0;v D m if .v;v0;m/ 2

EdgeGˆ;K0 , and.Mˆ;K0/v0;v D 0 otherwise. Thus each row and each column has only
finitely many non-vanishing entries.

The above proposition implies:

M0;K0 D 0; the zero matrix,

M1;K0 D 1; the identity matrix,

Mˆ1Cˆ2;K0 D Mˆ1;K0CMˆ2;K0 ;

Mrˆ1;K0 D rMˆ1;K0 ; and

Mˆ1�ˆ2;K0 D Mˆ2;K0Mˆ1;K0 :

Thus, we may regardHK0 as a subalgebra of the algebra ofC-linear mapsM
GFZA nGA =K0

C �!

M
GFZA nGA =K0

C :
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4.2 Unramified Hecke operators

From now on we will restrict ourselves to unramified automorphic forms and unramified
Hecke operators. Recall from Lemma 1.4.15 that the Hecke operatorsˆx together with
elements that act as1 on AK generateHK as a complex algebra. By Proposition 4.1.7
it is thus enough to know the graphs of generators to determine all graphs of unramified
Hecke operators. We use the shorthand notationGx for the graphGˆx ;K , andUx.v/ for
theˆx-neighboursUˆx ;K.v/ of v.

4.2.1 We introduce the“lower x convention”that says that a lower indexx on an algebraic
group defined over the adeles ofF will consist of only the component atx of the adelic
points, for example,Gx DGFx

,Zx DZFx
, etc. Analogously, we haveKx DGOx

.
The “upper x convention”means that a upper indexx on an algebraic group defined

over the adeles ofF will consist of all components except for the one atx. In particular,
we first defineAx D

Q0

y¤x Fy , the restricted product relative toOx D
Q
y¤xOy over all

placesy that do not equalx. Then examples for groups with upperx areGx D GAx ,
Zx DZAx , etc. PutKx DGOx .

4.2.2 For the standard Borel subgroupB < G, we have the local and the global form of
theIwasawa decomposition, respectively:

Gx D BxKx and GA D BAK:

Recall from paragraph 1.1.2 that the uniformisers�x 2 F are considered as ideles
embedded viaF � � F �

x � A�. Also, we embed�x via �x � Fx � A, thus an elementb 2
�x will be considered as the adele whose component atx is b and whose other components
are0. Let P1 be the projective line. Define forw 2 P1.�x/,

�w D

0@�x b

1

1A if w D Œ1 W b� and �w D

0@1
�x

1A if w D Œ0 W 1�:

Note that�w 2GA depends onx asw is an element ofP1.�x/.

4.2.3 Lemma.

K

0@�x
1

1AK D a
w2P1.�x/

�wK :

Proof. It is clear thatK
�
�x

1

�
K is a disjoint union of cosets of the form�K for certain

� 2 GA . The question can be solved componentwise at each placey. If y ¤ x, then
Ky
�
1
1

�
Ky DKy as desired.

If y D x, then by the Iwasawa decomposition,�x can be chosen to be upper triangular.
Since ˇ̌̌̌

det

�
k

0@�x
1

1Ak0

�ˇ̌̌̌
x

D j�xjx

for k;k0 2Kx and all entries of�x have to lie inOx , the only possible cosets are the ones
occurring in the lemma. On the other hand they indeed occur since0@1 b

1

1A0@�x
1

1A0@1
1

1AD
0@�x b

1

1A
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and 0@ 1

1

1A0@�x
1

1A0@ 1

1

1AD
0@1

�x

1A: �

Since we normalise the operatorsˆx with the factor.volK/�1, the weights of edges in
Gx are positive integers. We shall also refer to them as themultiplicity of aˆx-neighbour.
The above lemma implies the following.

4.2.4 Proposition. Theˆx-neighbours ofŒg� are the classesŒg�w � with �w as in the
previous lemma, and the multiplicity of an edge fromŒg� to Œg0� equals the number of
w 2 P1.�x/ such thatŒg�w �D Œg0�. The multiplicities of the edges originating inŒg� sum
up to# P1.�x/D qxC1.

4.3 Examples for rational function fields

This section contains first examples of graphs of Hecke operators for a rational function
field, which can be calculated by elementary matrix manipulations. It serves to give an
impression of what the graphs of Hecke operators look like, but is not needed for the
subsequent theory. Hence, we do not show all calculations that led to the pictures as
presented. The reader will find more figures in section 7.3.

Let F be Fq.T /, the function field of the projective line overFq , which hasqC 1
rational points and trivial class group. Fix a placex of degree1.

4.3.1 Using strong approximation for SL2 (cf. Proposition 4.4.11, whereJ is trivial in
this case), we see that the map obtained by adding the identity matrixe at all placesy ¤ x,

� nGx =ZxKx �! GF nGA =KZA ;

Œgx � 7�! Œ.gx ; e/�

is a bijection.
We define an empty sum as0. Recall the notation:

� Ox
F D

T
y¤x.Oy\F / is the collection of all elements inF of the form

P0
iDm bi�

i
x

with bi 2 Fq for i Dm;: : : ;0 for some integerm.

� Kx D GL2.Ox/, whereOx is the collection of all power series
P
i�0 bi�

i
x with

bi 2 Fq for i � 0.

� � DGF \K
x DGL2.Ox

F / (cf. Remark 4.4.9).

4.3.2 For better readability, we write� for the uniformiser�x at x andg for a matrix
in Gx . We sayg � g0 if they represent the same classŒg� D Œg0� in � nGx =ZxKx , and
indicate by subscripts to ‘�’ how to alter one representative to another. The following
changes of the representativeg of a classŒg� 2 � nGx =ZxKx provide an algorithm to
determine a standard representative for the class of any matrixg 2Gx :
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(i) By the Iwasawa decomposition, cf. paragraph 4.2.2, every class in� nGx =ZxKx
is represented by an upper triangular matrix, and0@a b

d

1A �
=Zx

0@a b

d

1A 0@d�1

d�1

1A D

0@a=d b=d

1

1A :
(ii) Write a=d D r�n for some integern andr 2O�

x , then withb0 D b=d , we have0@r�n b0

1

1A �
=Kx

0@r�n b0

1

1A 0@r�1

1

1A D

0@�n b0

1

1A :
(iii) If b0 D

P
i�m bi�

i for some integerm and coefficientsbi 2 Fq for i �m, then0@�n P
i�m bi�

i

1

1A �
=Kx

0@�n P
i�m bi�

i

1

1A 0@1 ���n.
P
i�n bi�

i /

1

1A
D

0@�n bm�C : : :Cbn�1�
n�1

1

1A :
(iv) One can further perform the following step:

0@�n bm�
mC : : :Cbn�1�

n�1

1

1A
�
� n

0@1 �.bm�
mC : : :Cb0�

0/

1

1A 0@�n bm�
mC : : :Cbn�1�

n�1

1

1A
D

0@�n b1�C : : :Cbn�1�
n�1

1

1A :
(v) If b D b1�C : : :Cbn�1�

n�1 ¤ 0, thenb D s�k with 1� k � n�1, s 2O�
x and0@�n s �k

1

1A �
� n =ZxKx

0@ 1

1

1A 0@�n s �k

1

1A 0@s�1��k

s�1��k

1A 0@ �s2
s�n�k 1

1A
D

0@�n�2k s�1��k

1

1A :
(vi) The last trick is0@�n

1

1A �
� n =ZxKx

0@ 1

1

1A 0@�n
1

1A 0@��n

��n

1A 0@ 1

1

1A D
0@��n

1

1A :
Executing these steps (possibly (iii)–(v) several times) will finally lead to a matrix of

the form

pn D

0@��n

1

1A
for somen � 0, andpn � pm for positive integersn;m if and only if n D m, as can
be proven by geometric methods (Example 5.4.11 and [60, Example 2.4.1]) or by more
tedious elementary methods. We denote the classesŒpn� by cnx (with nx considered as
divisor, cf. 5.2.2) and derive:
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4.3.3 Proposition. For ˆ 2HK , Vert Gˆ;K D fcnxgn�0.

4.3.4 Example (Graph of0 and 1). Following Proposition 4.1.7, the graphs for the zero
element0 and the identity1 in HK are given in Figures 4.1 and 4.2, respectively.

c0 c3xc2xcx

Figure 4.1: The graph of the zero element inHK

1 1 1 1

c0 c3xc2xcx

Figure 4.2: The graph of the identity inHK

4.3.5 Example (Graph ofˆx). Let �w be as in Lemma 4.2.3. We are only concerned
with thex-component of�w , which we shall also denote by the symbol�w in this example.
Proposition 4.2.4 describes the edges, and the reduction steps (i)–(vi) in paragraph 4.3.2
describe how to find the standard representativepi for the class ofpj �w :

� For i � 0 andw D Œ0 W 1�,

pi�Œ0W1� D

0@��i

1

1A0@1
�

1A�
(i)

0@��.iC1/

1

1AD piC1 :
� For i D 0 andw D Œ1 W b0� with b0 2 Fq ,

p0�w D

0@� b0
1

1A �
(iv)

0@�
1

1A �
(vi)
p1 :

� For i � 1 andw D Œ1 W b0� with b0 2 Fq ,

pi�w D

0@��i

1

1A0@� b0
1

1A �
(iv)

0@��.i�1/

1

1AD pi�1 :
We conclude thatc0 D c0x is connected tocx D c1x with multiplicity qC 1, and for
positiven, cnx is connected toc.n�1/x with multiplicity q and toc.nC1/x with multiplicity
1 . ThusGx can be illustrated as in Figure 4.3.

q+1 1 1 1

c0

q q q

c3xc2xcx

Figure 4.3: The graph of̂ x
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c4xc2x

c3x c5x

c0

cx

q+1

1

q2 1

q2 1

q2 1

q2 1

q2
−q

q2

Figure 4.4: The graph of̂ y for a placey of degree2

4.3.6 Example (Graph ofˆy for y ¤ x). If we want to determine the edges ofGy for a
placey of degreed that differs fromx, we have to find the standard representativepj for
elements

pi

0@�y b

1

1A with b 2 �y ; and pi

0@1
�y

1A :
As F has class number1, we can assume that�y 2 F has nontrivial valuation iny andx
only. Let
 2 GF denote the inverse of one of the matrices

�
�y b

1

�
;
�
1
�y

�
. For all places

z¤ x;y, the canonical embeddingGF !Gz sends
 to a matrix
z 2Kz sincevz.�y/D 0
by assumption. Thus multiplying with
 2 GF from the left, which operates diagonally
on the components of all places, and multiplying componentwise with
�1

z 2Kz from the
right for all z ¤ x;y, gives an element that is nontrivial only inx (also compare with [23,
Lemma 3.7]). The matrices that we obtain in this way are:
0@�dx b0C�� �Cbd�1�

d�1
x

1

1A pi with bi 2 �x for i D 0; : : : ;d�1; and

0@1
�dx

1A pi :
The reduction steps (i)–(vi) of paragraph 4.3.2 tell us which classes are represented, and
we are able to determine the edges similarly to the previous example. Thus we obtain that
Gy only depends on the degree ofy. Note that ify is of degree1, thenGy equalsGx .
Figures 4.4, 4.5, 4.10, and 4.13 show the graphs for degrees2, 3, 4 and5, respectively.

c5x

1

c4x

1

c3x

1

c2x

1 q3

q31q3
−q2

q3

q3
−q

c0 cxq+1

q2

q3

Figure 4.5: The graph of̂ y for a placey of degree3
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2q 2q

2q 2q

c4xc2x

c3x c5x

c0

cx

q+1

1

q2 1 q2 1

q2 1 q2 1q2
+2q

q2
+q

Figure 4.6: The graph of̂ 2x

4.3.7 Example (The graph of powers of̂ x). It is interesting to compare the graph of
ˆy with degy D d with the graph of̂ d

x . The latter graph is easily deduced fromGx by
means of Proposition 4.1.7. Namely, a vertexv0 is aˆdx -neighbour of a vertexv in Gˆd

x ;K

if there is a path of lengthd from v to v0 in Gx , i.e. a sequence.v0;v1; : : : ;vd / of vertices
in Gx with v0 D v andvd D v0 such that for alli D 1; : : : ;d , there is an edge.vi�1;vi ;mi /
in Gx . The weight of an edge fromv to v0 in the graph ofG dx is obtained by taking the
sum of the productsm1 � : : : �md over all paths of lengthd from v to v0 in Gx .

Figure 4.6 and 4.7 show the graphs ofˆ2x andˆ3x , respectively, and we see that for
degy D 2, we havê 2

x DˆyC2q �1, and for degy D 3, we havê 3
x DˆyC3q �ˆx .

4.3.8 Remark. In these first examples, we saw graphs that contain a finite subgraph that is
irregular such that the complement follows a regular pattern that repeats periodically. This
behaviour is common to all graphs of Hecke operators, and when we illustrate a graph,
we will always picture the irregular part and at least one complete period. The geometric
methods in the next chapter will give an explanation for this periodical behaviour of graphs
of Hecke operators relative toK.

1

cxc0 q+1

1

c3x

1q3 1q3

c6x

1 q3 1q3

1q3 1q3

3q2
3q2

3q

3q23q

3q

3q2
3q2

3q

3q23q

3q

3qq3
+3q2

q3
+3q2

+2q
q2

+3q
q3

+2q2

c2x c5x c8x

c4x c7x

Figure 4.7: The graph of̂ 3x
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c′0

1

1

1

q

q

q 1

1

1q

q

q

1

1

1

c′x,[1:0]

c′x,[1:q−1]

c′x,[0:1] c′2x,[0:1]

c′2x,[1:q−1]

c′2x,[1:0]

Figure 4.8: Graph of̂ 0
y;e as defined in Example 4.3.9

4.3.9 Example (The graphs of two ramified Hecke operators).It is also possible to de-
termine examples for Hecke operators inHK0 by elementary matrix manipulations, when
K 0 <K is a subgroup of finite index. We will show two examples, which are illustrated in
Figures 4.8 and 4.9. We omit the calculation, but only point out why the crucial differences
between the two graphs occur.

ForK 0 D fk 2K j kx �
�
1
1

�
.mod�x/g, the fibres of the projection

P WGF nGA =ZAK
0
�!GF nGA =ZAK

are given byP�1.c0/DfŒp0�g and for positiven, byP�1.cnx/DfŒpnx#w �gw2P1.�x/
with

#Œ1Wc� D
�
1 c
1

�
and#Œ0W1� D

�
1

1

�
. The union of these fibres equals the set of vertices of a

Hecke operator inHK0 . We shall denote the vertices byc0
0 D Œp0� andc0

nx;w D Œpnx#w �

for n � 1 andw 2 P1.�x/. Note thatGFq
D G�x

acts onP1.�x/ from the right, so if

 2GFq

, thenw 7! w
 permutes the elements ofP1.�x/.
The first Hecke operator̂ 0

y;
 2HK0 that we consider is.volK=volK 0/ times the char-
acteristic function ofK 0

��y

1

�

K 0, wherey is a degree one place different tox and
 2GA

is a matrix whose only nontrivial component is
x 2 GFq
. (The factor.volK=volK 0/ is

only included to obtain integer weights). SinceK 0
��y

1

�

K 0 � K

��y

1

�

K, the graph

of ˆ0
y;
 relative toK 0 can have an edge fromv to w only if Gy has an edge fromP.v/

to P.w/. BecauseK 0
y D Ky , we argue as forK thatK 0

��y

1

�

K 0 D

`
w2P1.�y/

�w
K
0.

Applying the same methods as in Example 4.3.6, one obtains that

Uˆ0
y;
 ;K

0.c0
0/ D f.c

0
0; c

0
x;w ;1/gw2P1.�x/

and for everyn� 1 andw 2 P1.�x/ that

Uˆ0
y;
 ;K

0.c0
nx;w/ D f.c

0
0; c

0
.nC1/x;w
 ;1/; .c

0
0; c

0
.n�1/x;w
 ;q/g :

For the case that
 equals the identity matrixe, the graph is illustrated in Figure 4.8. Note
that for general
 , an edge does not necessarily have an inverse edge sincew
2 does not
have to equalw.
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c′x,[1:0]

c′x,[0:1] c′2x,[0:1]

c′0
1

q

q

c′2x,[1:0]

q

c′x,[1:q−1]

1

q

c′2x,[1:q−1]
1 1

11

Figure 4.9: Graph of̂ 0
x as defined in Example 4.3.9

The second Hecke operator̂0x 2HK0 is .volK=volK 0/ times the characteristic func-
tion of K 0

�
�x

1

�
K 0. This case behaves differently, sinceK 0

x andKx are not equal: We
haveK 0

�
�x

1

�
K 0D

`
b2�x

�
�x b�x

1

�
K 0. This allows us to compute the edges as illustrated

in Figure 4.9. Note that forn � 1, the vertices of the formc0
nx;Œ1W0�

andc0
nx;Œ0W1�

behave
particularly.

c0

1

c4x

1

c5x

1

c3x

1

c2x

cx

c6xq+1

1
q2

q4
−q3

q3
−q

1 q4

q4

q4

q4

q4
−q2

q3

q4
−q3

Figure 4.10: The graph of̂y for a placey of degree4



q2

q2
+q+1

1

1

1

q2

q2

q2
+q

q

q2
+q

q+1

q+1

c̃0,0

c̃1,0

c̃1,1

c̃2,2

c̃2,1

c̃2,0

Figure 4.11: Graph of̂ x;1 for GL3

q

q2
+q+1

1

1

1

q2
+q

q2
+q

q+1

q+1

q2

q2

q2

c̃0,0

c̃1,0

c̃1,1

c̃2,2

c̃2,1

c̃2,0

Figure 4.12: Graph of̂ x;2 for GL3
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4.3.10 Example (Two graphs forGL3). There is a generalisation of the notion of the
graph of a Hecke operator to other algebraic groups. We carry out two examples foreG D GL3. The notions of automorphic forms and Hecke operators as given in Chapter
1 transfer literally to GL3. Let eK D eGOA be the standard maximal compact subgroup ofeGA , eZ < eG the centre andeH the Hecke algebra. The elements ofeGF neGA =eZAeK are the
double cosets

Qci;j D eGF ���i

��j

1

�eZAeK
for i � j � 0. The role of̂ x is played by the two elements

ê
x;1 D chareK�� 1

1

�eK and ê
x;2 D chareK�� �

1

�eK
Proposition 4.2.4 generalises to GL3 for certain Q�w , but the indexw runs over the Grass-
mannianGr1;3.�x/ for êx;1 and overGr2;3.�x/ for êx;2. The reduction steps (i)–(vi) of
paragraph 4.3.2 also generalise, allowing us to calculate the graphs ofê

x;1 andêx;2 in
the same way as we did for̂x in Example 4.3.5. The result is shown in Figures 4.11 and
4.12. It is interesting to remark that the duality betweenGr1;3 andGr2;3 is reflected in the
graphs.

c4x

1

c5x

1

1q5

1q5

c3x

1q5

c6x

c7x

c8x

c0 cx

1
q2

c2x 1

q4
−q2

q3

q+1

q4
−q2

q5
−q4

+q2
−q

q5
−q4

q5
−q3

q4
1

q5

q5
q5
−q4

Figure 4.13: The graph of̂y for a placey of degree5
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4.4 Connection with Bruhat-Tits trees

Let x be a place. In this section we define maps from so-called Bruhat-Tits trees toGx .
This will enable us to determine the components ofGx . We let �w be as in Proposition
4.2.3.

4.4.1 Definition. TheBruhat-Tits treeTx for Fx has vertices

Vert Tx D Gx =KxZx

and edges

EdgeTx D f .Œg�; Œg
0�/ j 9w 2 P1.�x/; g � g0�w .modKxZx/ g :

4.4.2 For eachh 2GA , we define a map

‰x;h W Tx �! Gx

by
Vert Tx DGx =KxZx �! GF nGA =KZA D Vert Gx

Œg� 7�! Œhg�

and
EdgeTx �! EdgeGx
.Œg�; Œg0�/ 7�! .Œhg�; Œhg0�;m/

withm being the number of verticesŒg00� that are adjacent toŒg� in Tx such that‰x;h.Œg00�/D

‰x;h.Œg
0�/.

By Proposition 4.2.4 and the definition of a Bruhat-Tits tree,‰x;h is well-defined and
locally surjective, i.e. it is locally surjective as map between the associated simplicial
complexes ofTx andGx with suppressed weights.

To explain this in more detail: The associated simplicial complex gives the notion of
a component. Two vertices lie in the samecomponent, if there is a sequence of vertices
beginning with the one and ending with the other vertex in question such that each two
consecutive vertices in this sequence are connected by an edge. Edges lie in the component
of their origin. A map is locally surjective if for each vertex or edge in the image of that
map, every other vertex and edge of the corresponding component also lies in the image.

Since Bruhat-Tits trees are indeed trees ([60, II.1, Thm. 1]), hence in particular con-
nected, the image of each‰x;h is precisely one component ofGx .

4.4.3 Proposition. If .v;v0;m/ 2 EdgeGx , then there is am0 2 C� such that.v0;v;m0/ 2

EdgeGx .

Proof. Let .v;v0;m/ 2 EdgeGx , and leth 2 GA representv D Œh�. Since‰x;h is locally
surjective and‰x;h.Œe�/D v if e is the identity matrix, it is enough to show that for every
edge.1;w/, there is also the edge.w;1/ 2 EdgeTx .
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But this follows from

�Œ1Wb��Œ0W1� D

0@�x b

1

1A0@1
�x

1AD
0@�x b�x

�x

1A�
0@1

1

1A .modKxZx/

and

�Œ0W1��Œ1W0� D

0@1
�x

1A0@�x
1

1AD
0@�x

�x

1A�
0@1

1

1A .modKxZx/ :

�

4.4.4 Remark. This symmetry of edges is a property that is special to unramified Hecke
operators forG D GL2. In case of ramification, the symmetry is broken, cf. Example
4.3.9. For other algebraic groups, even unramified Hecke operators occur that have edges
without an inverse edge, cf. Example 4.3.10.

4.4.5 Theorem ([39, Thm. E.2.1]).SL2 has the strong approximation property, i.e. for
every placex, SL2F is a dense subset ofSL2Ax with respect to the adelic topology.

This theorem was first proven by Martin Kneser ([33], 1965) for number fields and
extended independently by Gopal Prasad ([52], 1977) and Gregory Margulis ([46], 1977)
to global fields.

4.4.6 Lemma.

GF nG
x =Kx

det
�! F �

n.Ax/� =.Ox/�

is bijective.

Proof. For surjectivity, we observe that for eacha 2 .Ax/�,

det

0@a
1

1AD a:
Fix an arbitrarya 2 .Ax/�. For injectivity, we have to show that eachg 2 Gx with

detg D a represents the same class as
�
a
1

�
in GF nGx =Kx . Since

det

�0@a
1

1Ag�1

�
D 1 ;

�
a
1

�
g�1 2SL2Ax . We putDy D

ˇ̌
vy.a/

ˇ̌
for all y¤ x, and chooseK 0 to be the collection

of all elementsk0 2 SL2Ax such that for ally 2 jX j, we havek0
y �

�
1
1

�
.mod m

Dy
y Oy/,

which is an open subgroup of SL2Ax . For allk0 2K 0, we havekD
�
a�1

1

�
k0
�
a
1

�
2Kx .

By the strong approximation property, there is a
 2 SL2F \
�
K 0
�
a
1

�
g�1

�
� GF .

Thus, we can find ak0 2K 0 such that

k0

0@a
1

1Ag�1
D 
 :
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With k 2Kx as above this gives 0@a
1

1Ak D 
g :
In other words,Œg�D

��
a
1

��
in GF nGx =Kx . �

4.4.7 Let x be a place of degreed . Since detW Gx ! .Ax/� is a group homomorphism,
andF � n.Ax/� =.Ox/� is a group, the bijection of the lemma defines a group structure
onGF nGx =Kx which coincides with the quotient product structure inherited fromGx ,
even though neitherGF nGx norGx=Kx is a group.

The quotient groupF � n.Ax/� =.Ox/� is nothing else but the class group of theinte-
gersOx

F D
T
y¤x.Oy \F / coprime tox. Thus we have isomorphisms of groups

GF nG
x =Kx ' F �

n.Ax/� =.Ox/� ' ClOx
F ' Cl0F �Z=dZ :

Let S � Gx be a set of representatives forGF nGx =Kx . Then Lemma 4.4.6 implies
that for everyg 2 GA , which can be written asg D gxgx with gx 2 Gx andgx 2 Gx ,
there ares 2 S , 
 2 GF andk 2 Kx such thatg D 
sk Qgx such that
sk equalsg in
all componentsz ¤ x and Qgx D 
�1gx . The conditionŒdets� D Œdetgx � as cosets in
GF nG

x =Kx implies thats is uniquely determined bygx . Observe that

GA =KZx D
�
Gx =Kx

�
�
�
Gx =KxZx

�
D
�
Gx =Kx

�
�Vert Tx ;

and define�s DGF \ sKxs�1. Then we obtain the following, also cf. [53, (2.1.3)].

4.4.8 Proposition. The decompositiong D 
sk Qgx induces a bijective map

GF nGA =KZx �!

a
s2S

�s n Vert Tx :

Œg� 7�! .s; Œ Qgx �/

Its inverse is obtained by putting together the componentss 2Gx and Qgx 2Gx . �

4.4.9 Remark. On the right hand side of the bijection in Proposition 4.4.8, we have a
finite union of quotients of the form�s n Vert Tx . If s is the identity elemente, then
� D �e DGOx

F
is an arithmetic group of the form that Serre considers in [60, II.2.3]. For

generals, we are not aware of any results about�s n Vert Tx in the literature.

4.4.10 So far, we have only divided out the action of thex-componentZx of the centre.
We still have to consider the action ofZx . If we restrict the determinant map to the
centre and writeJ D fz 2 ZF nZx =ZOx j jdetzj D 1g, then we have an exact sequence
of abelian groups

1 ! J ! ZF nZ
x =ZOx

det
�! ClOx

F ! ClOx
F =2ClOx

F ! 0 :

LetS be as in paragraph 4.4.7. The action ofZx onS factors through2ClOx
F and the

action ofZx on�s n Vert Tx factors throughJ for eachs 2 S . If we letS 0 �Gx be a set of
representatives for ClOx

F =2ClOx
F , andh2 D #.ClF /Œ2� the cardinality of the2-torsion,

then we obtain:
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4.4.11 Proposition.The decompositiong D 
sk Qgx induces a bijective map

GF nGA =KZA �!
a
s2S 0

J �s n Vert Tx :

The inverse maps an element.s; Œ Qgx �/ to the class of the adelic matrix with components
s 2Gx and Qgx 2Gx . The number of components ofGx equals

#
�
ClOx

F =2ClOx
F

�
D #.ClOxF /Œ2�D

�
h2 if degx is odd,
2h2 if degx is even.

Proof. Everything follows from Proposition 4.4.8 and paragraph 4.4.10 except for the two
equalities. Regarding the former, observe that both dividing out the squares and taking
2-torsion commutes with products, so by the structure theorem of finite abelian groups,
we can reduce the proof to groups of the formZ= QpmZ with Qp prime. If Qp ¤ 2, then
every element is a square and there is no2-torsion, hence the equality holds. IfQp D 2,
thenZ= QpmZ modulo squares has one nontrivial class, and there is exactly one nontrivial
element inZ= QpmZ that is2-torsion.

Regarding the latter equality, recall that ClOx
F 'Cl0F �Z=dZ, whered D degx. As

above,Z=dZ modulo squares has a nontrivial class if and only ifd is even, and in this
case there is only one such class.�

4.5 A vertex labelling

Let QA D ha
2 ja 2 A�i be the subgroup of squares. We look once more at the determinant

map

Vert Gx D GF nGA =KZA
det
�! F �

nA� =O�
A QA ' ClF =2ClF :

This map assigns to every vertex inGx a label in ClF =2ClF . Leth2 be as in Proposition
4.4.11. Observe that ClF=2ClF has2h2 elements, since the elements of even degree in
ClF are precisely the inverse image of Cl0F=2Cl0F , whose order ish2.

4.5.1 Proposition. If the prime divisorx is a square in the divisor class group then all
vertices in the same component ofGx have the same label, and there are2h2 components,
each of which has a different label. Otherwise, the vertices of each component have one of
two labels that differ byx in ClF =2ClF , and two adjacent vertices have different labels,
so each connected component is bipartite.

Proof. First of all, observe that each label is realised, since if we represent a label by some
idelea, then the vertex represented by

�
a
1

�
has this label.

Let Qx D hb
2 j b 2 F �

x i and ClFx D F �
x =O�

x , a group isomorphic toZ. For the
Bruhat-Tits treeTx , the determinant map

Vert Tx D Gx =KxZx
det
�! F �

x =O�
xQx ' ClFx =2ClFx ' Z=2Z
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defines a labelling of the vertices, and the two classes ofF �
x =O�

xQx are represented by
1 and�x . Two adjacent vertices have the different labels since forg 2 Gx and�w as in
Definition 4.4.1, det.g�w/D �x detg represents a class different from detg in Vert Tx .

Define fora 2 A� a map x;a W F �
x =O�

xQx ! F � nA� =O�
A QA by  x;a.Œb�/ D

Œab�, whereb is viewed as the idele concentrated inx. For everyh 2 GA we obtain a
commutative diagram

Vert Tx

��

D Gx =KxZx

det
��

‰x;h // GF nGA =KZA

det
��

D Vert Gx

��
ClFx =2ClFx ' F �

x =O�
xQx

 x;deth // F � nA� =O�
A QA ' ClF =2ClF :

This means that vertices with equal labels map to vertices with equal labels.
Each component ofGx lies in the image of a suitable‰x;h, thus has at most two labels.

On the other hand, the two labels ofTx map to x;deth.Œ1�/ D Œa� and x;deth.Œ�x �/ D

Œa�x �. The divisor classes ofŒa� and Œa�x � differ by the class of the prime divisorx,
and are equal if and only ifx is a square in the divisor class group. If so, according to
Proposition 4.4.11, there must be2h2 components so that the2h2 labels are spread over
all components. Ifx is not a square then by the local surjectivity of‰x;h on edges two
adjacent vertices ofGx also have different labels. �



CHAPTER 5

Geometry of Hecke operators

A global field of positive characteristic can be interpreted as the function field
of a curve over a finite field. This provides the theory of automorphic forms
over global function fields with a geometrical meaning. The domain of an
unramified automorphic form translates to isomorphism classes of projective
line bundles over the curve and the action of a Hecke operator can be described
by certain exact sequences of sheaves on the curve. This approach allows us to
apply methods from algebraic geometry, which lead to a complete description
of the graph of a Hecke operator up to a finite subgraph.

5.1 Geometric description of unramified Hecke operators

Let Gx be as in Section 4.2. We will give a brief introduction to the geometric concepts
needed for a description ofGx .

5.1.1 For each global function fieldF with constantsFq , there is, up to isomorphism,
precisely one geometrically irreducible smooth projective curveX overFq whose function
field is isomorphic toF . One can constructX as follows.

The topological spaceX top of X consists of all placesx of F and a generic point�,
where the nontrivial closed sets are finite unions of places. Then we find backjX j, which
we defined in 1.1.2 as the set of closed points ofX top. Define the stalks of the structure
sheafOX and their embedding into the generic stalk by

OX;x WD Ox \F ,�! F DW OX;� :

Then for an open setU �X top,

OX .U / WD
\
x2U

OX;x D
\
x2U

.Ox \F / � F :

Let!X be the canonical bundle and let

gX D dimFq
�.X;!X / D dimFq

H 1.X;OX /

be the genus of the curve, which equals the genusgF of F as defined in paragraph 1.1.5.
We sometimes interchangeF andX in our notation, e.g. we write ClX for ClF , hX

for hF , or OF;x for OX;x etc.

71
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5.1.2 Remark. The usage of the letterO for both the structure sheaf ofX and its stalks
as well as for the rings of integers ofF , Fx andA may cause confusion if not read care-
fully, but different indices avoid ambiguity. There are various relationships between these
objects, e.g.Ox is the completion ofOX;x .

5.1.3 We shall consider vector bundles onX to be embedded in the category of sheaves
([28, Ex. II.5.18]). We denote by BunnX the set of isomorphism classes ofrankn bundles
overX and by PicX thePicard group, i.e. the isomorphism classes ofline bundlestogether
with the tensor product, which turns it into an abelian group. ForL1;L2 2 PicX , we use
the shorthand notationL1L2 for L1˝L2. There is a natural action

BunnX �PicX �! BunnX :
.M;L/ 7�! M˝L

Let PBunnX be the orbit set BunnX = PicX , which is nothing else but the set of iso-
morphism classes ofPn�1-bundles overX ([28, Ex. II.7.10]). Accordingly we will call
elements ofPBunnX projective space bundles, or in the casenD 2, projective line bun-
dles. If we regard the total space of a projective line bundle as a scheme, then we obtain
nothing else but a ruled surface, cf. [28, Prop. V.2.2]. ThusPBun2X may also be seen as
the set of isomorphism classes of ruled surfaces overX .

If two vector bundlesM1 andM2 are in the same orbit of the action of PicX , we write

M1 � M2 ;

and say thatM1 andM2 areprojectively equivalent. By ŒM� 2 PBunnX , we mean the
class that is represented by the rankn bundleM.

Thedeterminantmap ([28, Ex. II.6.11])

detW BunnX �! PicX
M 7�! .n-th exterior power ofM/

is multiplicative in exact sequences, i.e. if there is an exact sequence of vector bundles

0 // M0 // M // M00 // 0 ;

then detM D detM0˝detM00 :

Taking theassociated line bundle

ClF �! PicX
ŒD� 7�! LD

is an isomorphism of abelian groups ([28, Prop. II.6.13]), which allows us to define the
degree of a vector bundleby degM D degD when detM 'LD. If F is a torsion sheaf,
i.e. a coherent sheaf whose stalk at� is zero ([28, Ex. II.6.12]), then one defines its degree
by degF D

P
x2jX j dimFq

.Fx/.
The degree is additive in exact sequences of vector bundles, i.e. that for an exact se-

quence as above, degMD degM0CdegM00. Additivity holds also if one replacesM00 by
a torsion sheaf, see [28, Ex. II.6.10-6.12].
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5.1.4 Remark. Note that ifD D x is a prime divisor, the notation for the associated line
bundleLx coincides with the notation for the stalk ofL atx. In order to avoid confusion,
we will reserve the notationLx strictly for the associated line bundle. In case we have
to consider the stalk of a line bundle, we will use a symbol different fromL for the line
bundle.

5.1.5 The bijection

F � nA� =O�
A D ClF

1W1
 ! PicX D Bun1X ;

Œa� 7�! La

whereLa DLD if D is the divisor determined bya, generalises to all vector bundles as
follows, cf. [20, Lemma 3.1] and [22, 2.1].

A rankn bundleM can be described by choosing bases

M�
�
�!On

X;� D F
n and Mx

�
�!On

F;x D .Ox \F /
n

for all stalks. This gives a diagram

On
x

� �

g�1
x

// F nx

On
F;x

?�

OO

� �

g�1
x

// F n
?�

OO

Mx

�

OO

� � // M�

�

OO

for every closed pointx, where the matrixgx 2GLnF is determined by the constraint that
its inverse describes the unique linear map such that diagram commutes. By the nature of
a vector bundle,gx 2GLnOF;x �GLnOx for almost all placesx. In this way,M defines
a classŒg�D Œ.gx/� 2GLnF nGLnA =GLnOA .

To see that this assignment is well-defined on isomorphism classes of vector bundles,
take a vector bundleM0 that is isomorphicM and suppose that choices of bases for its
stalks defines an elementg0 D .g0

x/ 2GLnA. An isomorphismM0!M induces isomor-
phisms of the stalks

M0
�

�
�!M� and M0

x

�
�!Mx

for all x. Altogether, this fits into a larger diagram for everyx:

On
x

�

k�1
x

// On
x

� �

g�1
x

// F nx F nx
�



oo

On
F;x

�

k�1
x

//
?�

OO

On
F;x

?�

OO

� �

g�1
x

// F n
?�

OO

F n
?�

OO

�



oo

M0
x

�

OO

� // Mx

�

OO

� � // M�

�

OO

M0
� :

�

OO

�oo
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Here, again, the matriceskx 2 GLnOF;x � GLnOx and
 2 GLnF are uniquely deter-
mined by the constrains of commutativity. Thus we see that.g0

x/
�1 D k�1

x g�1
x 
�1 for all

x, or equivalently, if we putk D .kx/ 2 GLn.OA/, thatg0 D 
gk, and thusŒg0�D Œg� as
classes in GLnF nGLnA =GLnOA .

Since the inclusionF � Fx is dense for every placex, and GLnOA is open in GLnA,
every class in GLnF nGLnA =GLnOA is represented by ag D .gx/ 2 GLnA such that
gx 2GLnF for all placesx. This means that the above construction can be reversed. We
obtain:

5.1.6 Lemma. For everyn� 1, there is a bijection

GLnF nGLnA =GLnOA
1W1
 ! BunnX

Œg� 7�! Mg

such thatMg˝La DMag for a 2 A�, anddegMg D deg.detg/. �

5.1.7 Lemma. If ZnA denotes the centre ofGLnA, then there is a bijection

GLnF ZnA nGLnA =GLnOA
1W1
 ! PBunnX

for everyn� 1. �

5.1.8 The last lemma identifies the set of vertices ofGx with the geometric objectPBun2X .
The next task is to describe edges ofGx in geometric terms.

We say that two exact sequences of sheaves

0! F1! F ! F 0
1! 0 and 0! F2! F ! F 0

2! 0 ;

areisomorphic with fixedF if there are isomorphismsF1! F2 andF 0
1! F 0

2 such that

0 // F1 //

'

��

F // F 0
1

//

'

��

0

0 // F2 // F // F 0
2

// 0

commutes.
Let Kx be the torsion sheaf that is supported atx and has stalk�x at x, where�x

is the residue field atx. Fix a representativeM of ŒM� 2 PBun2X . Then we define
mx.ŒM�; ŒM0�/ as the number of isomorphism classes of exact sequences

0 // M00 // M // Kx
// 0 ;

with fixed M and withM00 representingŒM0�. This number is independent of the choice
of the representativeM because for another choice, which would be a vector bundle of the
form M˝L for someL 2 PicX , we have the bijection
˚

isomorphism classes
0!M00!M!Kx! 0

with fixedM

	
�!

˚
isomorphism classes

0!M000!M˝L!Kx! 0

with fixedM

	
:

.0!M00!M!Kx! 0/ 7�! .0!M00˝L!M˝L!Kx! 0/
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5.1.9 Definition. Let x be a place. For a projective line bundleŒM� 2 PBun2X we define

Ux.ŒM�/ D
˚
.ŒM�; ŒM0�;m/

ˇ̌
mDmx.ŒM�; ŒM0�/¤ 0

	
;

and call the occurringŒM0� theˆx-neighbours ofŒM�, andmx.ŒM�; ŒM0�/ theirmultiplic-
ity.

5.1.10 We shall show that this concept of neighbours is the same as the one defined for
classes inGFZA nGA =K in Definition 4.1.2. In Proposition 4.2.4, we determined the
ˆx-neighbours of a classŒg� 2GFZA nGA =K to be of the formŒg�w � for aw 2 P1.�x/.
Fix a basis.Mg/y

�
!O2

X;y for eachy 2 jX j. Note that by the definition of�w in paragraph
4.2.2, multiplying an element ofO2

X;y with the component.�w/y from the right yields an
element ofO2

X;y . Thus we obtain an exact sequence ofFq-modules

0 //
Q
y2jX j

O2
X;y

�w //
Q
y2jX j

O2
X;y

// �x // 0 ;

and by the correspondence explained in paragraph 5.1.5 an exact sequence of sheaves

0 // Mg�w
// Mg

// Kx
// 0 :

This mapsw 2 P1.�x/ to the isomorphism class of
�
0!Mg�w

!Mg !Kx! 0
�

with
fixedMg .

On the other hand, as we have chosen a basis for the stalk atx, each isomorphism
class of sequences

�
0 ! M0 ! M ! Kx ! 0

�
with fixed M defines an element in

P
�
O2
X;x =.mxOX;x/

2
�
D P1.�x/, which gives backw.

We have proven the following.

5.1.11 Lemma.For everyx 2 jX j, the map

Ux.Œg�/ �! Ux.ŒMg �/

.Œg�; Œg0�;m/ 7�! .ŒMg �; ŒMg0 �;m/

is a well-defined bijection. �

Lemmas 5.1.6 and 5.1.11 imply:

5.1.12 Proposition.Letx 2 jX j. The graphGx ofˆx is described in geometric terms as:

Vert Gx D PBun2X and

EdgeGx D
a

ŒM�2PBun2X

Ux.ŒM�/ : �

5.1.13 Remark. This interpretation shows that the graphs that we consider are a global
version of the graphs of Serre ([60, Chapter II.2]). We are looking at all rank2 bundles on
X modulo the action of the Picard group ofX while Serre considers rank2 bundles that
trivialise outside a given placex modulo line bundles that trivialise outsidex. As already
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remarked in 4.4.9, we obtain a projection of the graph of Serre to the component of the
trivial classc0.

Serre describes his graphs as quotients of Bruhat-Tits trees by the action of the group
� DGOx

F
(cf. Remark 4.4.9) on both vertices and edges. This leads in general to multiple

edges between vertices in the quotient graph, see e.g. [60, 2.4.2c]. This does not happen
with graphs of Hecke operators: there is at most one edge with given origin and terminus.

Relative to the action of� on Serre’s graphs, one can define the weight of an edge as
the order of the stabiliser of its origin in the stabiliser of the edge. The projection from
Serre’s graphs to graphs of Hecke operators identifies all the different edges between two
vertices, adding up their weights to obtain the weight of the image edge.

5.2 Geometric classification of vertices

Our aim is to show that the set of isomorphism classes of projective line bundles overX

can be separated into subspaces corresponding to certain quotients of the the divisor class
group ofF , the divisor class group ofFq2F and geometrically indecomposable projective
line bundles.

5.2.1 We denotethe dual vector bundleof M by M_. For a line bundleL,

L˝L_
' OX ;

thus the dual line bundleL_ represents the multiplicative inverseL�1 ([28, Prop. II.6.12]).
For two vector bundlesM1 andM2 overX , theFq-vector space of sheaf morphisms

Hom.M1;M2/ ' �.X;M_
1 ˝M2/

is finite-dimensional.
We call a vector bundleM indecomposableif for every decomposition

M D M1˚M2

into two subbundlesM1 andM2, one factor is trivial and the other is isomorphic toM. The
Krull-Schmidt theoremholds for the category of vector bundles overX , i.e. every vector
bundleM onX defined overFq has, up to permutation of factors, a unique decomposition
into a direct sum of indecomposable subbundles, see [4, Thm. 2].

An extension of scalarsFqiF=F , or geometrically,p W X 0 D X ˝Fqi ! X , defines
the inverse image or theconstant extensionof vector bundles

p� W BunnX �! BunnX 0 :

M 7�! p�M

The isomorphism classes of rankn bundles that after extension of constants toFqi become
isomorphic top�M are classified byH 1

�
Gal.Fqi =Fq/;Aut.M˝Fqi /

�
, cf. [1, Section 1].

The algebraic group Aut.M˝Fqi / is an open subvariety of the connected algebraic group
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End.M˝Fqi /, and thus it is itself a connected algebraic group. As a consequence of
Lang’s theorem ([36, Cor. to Thm. 1]), we haveH 1

�
Gal.Fqi =Fq/;Aut.M˝Fqi /

�
D 1.

We deduce thatp� is injective. In particular, one can consider the constant extension
to the geometric curveX D X˝Fq over an algebraic closureFq of Fq . Then two vector
bundles are isomorphic if and only if they are geometrically isomorphic, i.e. that their
constant extensions toX are isomorphic. We can therefore think of BunnX as a subset of
BunnX 0 and BunnX . Although we will point out at many places that PicX is mapped to
PicX 0 viap�, we will consider ClX as a subgroup of ClX 0 and omitp� from the notation.

On the other hand,p WX 0!X defines the direct image or thetraceof vector bundles

p� W BunnX 0 �! Bunni X ;

M 7�! p�M

and we have that forM 2 BunnX

p�p
�M ' Mi :

There is a natural action of Gal.Fqi =Fq/DGal.FqiF=F /

Gal.Fqi =Fq/�BunnX 0 �! BunnX 0

. � ; M / 7�! M�

whereM� denotes the vector bundle with stalksM�
x DM��1.x/. Then forM 2 BunnX 0,

p�p�M '

M
�2Gal.F

qi =Fq/

M� :

The right hand side of the equation is a decomposition ofp�.p�M/ overX 0. This
is a decomposition overX only if the factors are defined overX . This shows that ifM
is not defined overX , the notion of an indecomposable vector bundle is not stable under
constant extension. We call a vector bundlegeometrically indecomposableif its extension
to X is indecomposable. In [1, Thm. 1.8], it is shown that every indecomposable vector
bundle overX is the trace of an geometrically indecomposable bundle over some constant
extensionX 0 of X .

There are certain compatibilities of constant extension and trace with tensor products.
Namely, for a vector bundleM and a line bundleL overX , we have

p�.M˝L/ ' p�M˝p�L ;

and for a vector bundleM0 overX 0,

p�M0
˝L ' p�.M

0
˝p�L/ :

Thusp� induces a map denoted by the same symbol

p� W PBunnX �! PBunnX 0 ;

ŒM� 7�! Œp�M�

andp� induces
p� W BunnX 0 =p� PicX �! PBunni X :

ŒM� 7�! Œp�M�
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5.2.2 We look at the situation fornD 2 andi D 2. Let� be the nontrivial automorphism of
Fq2=Fq . The setPBun2X is the disjoint union of the set of classes of decomposable rank
2 bundles, i.e. rank2 bundles that are isomorphic to the direct sum of two line bundles,
and the set of classes of indecomposable bundles. We denote these sets byPBundec

2 X

andPBunindec
2 X , respectively. LetPBungi

2 X � PBunindec
2 X be the subset of classes of

geometrically indecomposable bundles. Since the rank is2, the complementPBuntr
2X D

PBunindec
2 X �PBungi

2 X consists of classes of traces of line bundles that are defined over
the quadratic extensionX 0 DX˝Fq2 . Thus, we have a disjoint union

PBun2X D PBundec
2 X q PBuntr

2X q PBungi
2 X :

One has to be aware of the fact that there are traces of line bundlesL overX 0 that
decompose overX ; more precisely,p�L decomposes if and only ifL 2 p� PicX , and
thenp�L�OX ˚OX .

For ŒD� 2 ClX , define

cD D ŒLD˚OX � 2 PBundec
2 X ;

and for aŒD� 2 ClX 0, define

tD D Œp�LD� 2 PBuntr
2X [fc0g :

Note that� acts on ClX 0 in a way compatible with the identification ClX 0'PicX 0. Since
p�p�.L/ ' L˚L� ' p�p�.L

� / for L 2 PicX 0, and isomorphism classes of vector
bundles are stable under constant extensions, we havetD D t�D.

We derive the following characterisations ofPBundec
2 X andPBuntr

2X :

5.2.3 Proposition.
ClX �! PBundec

2 X

ŒD� 7�! cD

is surjective with fibres of the formfŒD�; Œ�D�g.

Proof. Let M decompose intoL1˚L2. Then

M ' L1˚L2 �
�
L1˚L2

�
˝L�1

2 ' L1L
�1
2 ˚OX ;

thus surjectivity follows. LetLD0˚OX represent the same projective line bundle asLD˚

OX , then there is a line bundleL0 such that

LD˚OX '
�
LD0˚OX

�
˝L0 ;

and thus eitherL0 'OX andLD 'LD0 or L0 'LD andLD0˝LD 'OX . HenceŒD0�

either equalsŒD� or Œ�D�. �

5.2.4 Proposition.
ClX 0 = ClX �! PBuntr

2X [fc0g

ŒD� 7�! tD

is surjective with fibres of the formfŒD�; Œ�D�g.
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Proof. Surjectivity is clear. Assume thatŒD1�; ŒD2� 2 ClX 0 have the same image, then
there is aL0 2 PicX such that

p�L1 ' p�L2˝L0 ;

where we briefly wroteLi for LDi
. Then inPBun2X 0, we see that

L1˚L�
1 ' p�p�L1

' p�p�L2˝p
�L0

' .L2˝p
�L0/˚ .L

�
2 ˝p

�L0/ ;

thus eitherL1 ' L2˝p
�L0, which implies thatD1 andD2 represent the same class

in ClX 0 = ClX , or L1 'L�
2 ˝p

�L0, which means thatD1 represents the same class as
�D2. But in ClX 0 = ClX ,

Œ�D2� D Œ�D2CD2„ ƒ‚ …
2ClX

�D2� D Œ�D2� : �

5.2.5 Lemma. The constant extension restricts to an injective map

p�
W PBundec

2 X q PBuntr
2X ,�! PBundec

2 X 0 :

Proof. Sincep�p�.L/' L˚L� for a line bundleL overX 0, it is clear that the image
is contained inPBundec

2 X 0. The images ofPBundec
2 X and PBuntr

2X are disjoint since
elements of the image of the latter set decompose into line bundles overX 0 that are not
defined overX . If we denote taking the inverse elements by inv, then by Proposition 5.2.3,
p� is injective restricted toPBundec

2 X because.ClX= inv/! .ClX 0= inv/ is. Regarding
PBuntr

2X , observe that

p�.tD/ D p�p�.LD/

' LD˚L�D

� LD��D˚OX

D cD��D ;

where by Proposition 5.2.4,D represents an element in
�
ClX 0=ClX

�
= inv, and by Propo-

sition 5.2.3,D� �D represents an element in ClX= inv. If there areŒD1�; ŒD2� 2 ClX 0

such that.D1��D1/D˙.D2��D2/, then we haveD1�D2 D �.D1�D2/, and con-
sequentlyŒD1�D2� 2 ClX . �

5.2.6 Remark. The constant extension also restricts to a map

p�
W PBungi

2 X �! PBungi
2 X

0 :

But this restriction is in general not injective in contrast to the previous result. For a
counterexample to injectivity, consider Remark 7.1.7.
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5.3 Reduction theory for rank 2 bundles

This section introduces reduction theory for rank 2 bundles, i.e. the investigation of vector
bundles by looking at proper subbundles.

5.3.1 Vector bundles do not form a full subcategory of the category of sheaves, to wit, if
M1 andM2 are vector bundles andM1!M2 is a morphism of sheaves, then the cokernel
may have nontrivial torsion, which does not occur for a morphism of vector bundles. Thus
by a line subbundleL!M of a vector bundleM, we mean an injective morphism of
sheaves such that the cokernelM=L is again a vector bundle.

But every locally free subsheafL!M of rank 1 extends to a uniquely determined
line subbundleL!M, viz. L is determined by the constraintL�L ([60, p. 100]). On
the other hand, every rank2 bundle has a line subbundle ([28, Corollary V.2.7]).

Two line subbundlesL!M and L0 !M are said to be the same if their image
coincides, or in other words, if there is an isomorphismL' L0 that commutes with the
inclusions intoM.

For a line subbundleL!M of a rank2 bundleM, we define

ı.L;M/ WD degL�deg.M=L/ D 2degL�degM

and
ı.M/ WD sup

L!M
line subbundle

ı.L;M/ :

If ı.M/ D ı.L;M/, then we callL a line subbundle of maximal degree, or briefly, a
maximal subbundle. Sinceı.L˝L0;M˝L0/D ı.L;M/ for a line bundleL0, ı.M/ is a
well-defined invariant onPBun2X , and we putı.ŒM�/D ı.M/.

Let gX be the genus ofX . Then the Riemann-Roch theorem and Serre duality imply:

5.3.2 Proposition ([60, II.2.2, Prop. 6 and 7]).For every rank2 bundleM,

�2gX � ı.M/ <1 :

If L!M is a line subbundle withı.L;M/ > 2gX �2, thenM 'L˚M=L.

5.3.3 Every extension of a line bundleL0 by a line bundleL, i.e. every exact sequence of
the form

0 // L // M // L0 // 0 ;

determines a rank2 bundleM 2 Bun2X . This defines for allL;L0 2 PicX a map

Ext1.L;L0/ �! Bun2X ;

which maps the zero element toL˚L0. Remark that since decomposable bundles may
have line subbundles that differ from its given two factors, nontrivial elements can give
rise to decomposable bundles.

The unitsF�
q operate by multiplication on theFq-vector space

Ext1.L;L0/ '
Serre

duality

Hom.L;L0!_
X / :
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The multiplication of a morphismL!L0!_
X by ana 2 F�

q is nothing else but multiplying
the stalk.L/� by a�1 and all stalks.L0!_

X /x at closed pointsx by a, which induces
automorphisms on bothL andL0!_

X , respectively. Thus, two elements of Ext1.L;L0/

that areF�
q -multiples of each other define the same bundleM 2 Bun2X . We get a well-

defined map
PExt1.L;L0/ �! Bun2X

where the projective spacePExt1.L;L0/ is defined as the empty set when Ext1.L;L0/ is
trivial. If we further project toPBun2X , we can reformulate the above properties of the
invariantı as follows.

5.3.4 Proposition. The mapa
�2gX �degL�2gX �2

PExt1.L;OX / �! PBun2X

meets every element ofPBunindec
2 X , and the fibre of anyŒM� 2 PBun2X is of the formn

0!L!M!OX ! 0
ˇ̌̌
ı.L;M/��2gX

andM'= L˚OX

o
:

Proof. We know that everyŒM� 2 PBun2X has a reduction

0 // L // M // L0 // 0

with ı.L;M/ � �2gX , where we may assume thatL0 D OX by replacingM with M˝

.L0/�1, henceı.L;M/DdegL. If degL>2gX�2, thenM decomposes, so Ext1.L;OX /
is trivial andPExt1.L;OX / is the empty set. This explains the form of the fibres and that
PBunindec

2 X is contained in the image. �

5.3.5 Corollary. There are only finitely many isomorphism classes of indecomposable
projective line bundles.

Proof. This is clear since
`

�2gX �degL�2gX �2

PExt1.L;OX / is a finite union of finite sets. �

5.3.6 Lemma. If L!M is a maximal subbundle, then for every line subbundleL0!M

that is different fromL!M,

ı.L0;M/� �ı.L;M/ :

Equality holds if and only ifM 'L˚L0, i.e.M decomposes andL0 is a complement of
L in M.

Proof. Compare with [56, Lemma 3.1.1.]. SinceL0!M is different fromL!M, there
is no inclusionL0!L that commutes with the inclusions intoM. Hence the composed
morphismL0!M!M=L must be injective, and degL0 � degM=LD degM�degL.
This implies thatı.L0;M/D 2degL0�degM � degM�2degLD�ı.L;M/. Equality
holds if and only ifL0!M=L0 is an isomorphism, but its inverse then defines a section
M=L'L0!M. �
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5.3.7 Proposition.

(i) A rank2 bundleM has at most one line subbundleL!M such thatı.L;M/� 1.

(ii) If L!M is a line subbundle withı.L;M/� 0, thenı.M/D ı.L;M/.

(iii) If ı.M/D 0, we distinguish three cases.

(1) M has only one maximal line bundle: this happens if and only ifM is inde-
composable.

(2) M has exactly two maximal subbundlesL1!M andL2!M: this happens
if and only ifL1 '= L2 andM 'L1˚L2.

(3) M has exactlyqC1 maximal subbundles: this happens if and only if all max-
imal subbundles are of the same isomorphism typeL andM 'L˚L.

(iv) ı.cD/D jdegDj.

(v) ı.M/ is invariant under extension of constants forŒM� 2 PBundec
2 X .

Proof. Everything follows from preceding lemmas, except for the fact thatL˚L has
preciselyqC1 maximal subbundles in part (iii3), which needs some explanation.

First observe that by tensoring withL�1, we reduce the question to searching the
maximal subbundles ofOX ˚OX . This bundle has canonical bases at every stalk, which
induce the canonical inclusionsO2

X;x ,!O2
X;� of the stalks at closed pointsx into the stalk

at the generic point�. This allows us to choose for any line subbundleF ! OX ˚OX
a trivialisation with trivial coordinate changes. Thus for every open subset over which
F trivialises, we obtain the same1-dimensionalF -subspaceF� � O2

X;� D F
2. On the

other hand, every1-dimensional subspaceF� �O2
X;� gives back the line subbundle by the

inclusion of stalksFx D F� \O2
X;x ,! F�. We see that for every placex, degxF � 0,

and only the lines inO2
X;� D F

2 that are generated by an element inF2q � F
2 define line

subbundlesF ! OX ˚OX with degxF D 0 for every placex. But there areqC 1 D
#P1.Fq/ different such line subbundles. �

5.3.8 Proposition. Letp W X 0 D X ˝Fq2 ! X andL 2 PicX 0, thenı.p�L/ is an even
non-positive integer. It equals0 if and only ifL 2 p� PicX .

Proof. OverX 0, we havep�p�L' L˚L� , and degLD degL� , thus by the previous
paragraph, a maximal subbundle ofp�L has at most the same degree asL, or, equiva-
lently, ı.p�L/ � 0. A maximal subbundle has the same degree asL if and only if it is
isomorphic toL or L� which can only be the case whenL already is defined overX .
Finally, by the very definition ofı.M/ for rank2 bundlesM, it follows that

ı.M/ � degM .mod 2/ ;

and deg.p�L/D 2degL is even. �

5.3.9 Remark. We see that forŒM� 2 PBuntr
2X , the invariantı.M/ must get larger if we

extend constants toFq2 , becausep�.M/ decomposes overX 0. This stays in contrast to
the result for classes inPBuntr

2X (Proposition 5.3.7 (v)).
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5.4 Geometric classification of edges

This section will define certain subgraphs ofGx for a placex, namely, the cusp of a divisor
class modulox, which is an infinite subgraph of a simple nature, and the nucleus, which is
a finite subgraph that depends heavily on the arithmetic ofF . Finally,Gx can be described
as the union of the nucleus with a finite number of cusps.

5.4.1 We use reduction theory to investigate sequences of the form

0 // M0 // M // Kx
// 0 ;

which occur in the definition ofUx.ŒM�/. By paragraph 5.1.3, degM0D degM�dx when
dx D dimFq

�x is the degree ofx.
If L!M is a line subbundle, then we say that it lifts toM0 if there exists a morphism

L!M0 such that the diagram
L

}}||
||

||
||

��
M0 // M

commutes. In this case,L!M0 is indeed a subbundle since otherwise it would extend
nontrivially to a subbundleL!M0 �M and would contradict the hypothesis thatL is
a subbundle ofM. By exactness of the above sequence, a line subbundleL!M lifts to
M0 if and only if the image ofL in Kx is 0.

Let Jx � OX be the kernel ofOX !Kx . This is also a line bundle, sinceKx is a
torsion sheaf. For every line bundleL, we may think ofLJx as a subsheaf ofL. In PicX ,
the line bundleJx represents the inverse ofLx ,the line bundle associated to the divisorx.
In particular, degJx D degL�1

x D�dx .
If L!M does not lift to a subbundle ofM0, we have thatLJx �L!M lifts to a

subbundle ofM0:
JxL

��

� L

��
M0 // M :

Note that every subbundleL!M0 is a locally free subsheaf ofL!M and thus
extends to a subbundleL!M. If thus L!M is a maximal subbundle that lifts to
a subbundleL!M0, thenL!M0 is a maximal subbundle. If, however,L!M is
a maximal subbundle that does not lift to a subbundleL!M0, thenLJx !M0 is a
subbundle, which is not necessarily maximal. These considerations imply that

ı.M0/ � 2degL�degM0
D 2degL� .degM�dx/ D ı.M/Cdx and

ı.M0/ � 2degJxL�degM0
D 2degL�2dx � .degM�dx/ D ı.M/�dx :

Sinceı.M0/� degM0 D degM�dx .mod 2/, we derive:

5.4.2 Lemma. If 0!M0!M!Kx! 0 is exact, then

ı.M0/ 2
˚
ı.M/�dx ; ı.M/�dxC2; : : : ; ı.M/Cdx

	
: �
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5.4.3 Every line subbundleL!M defines a lineL=LJx in P1
�
M=.M˝Jx/

�
. By the

bijection of paragraph 5.1.10,�isomorphism classes of exact

0!M0!M!Kx!0

with fixedM

�
1W1
�! P1

�
M=.M˝Jx/

�
;�

0!M0!M!Kx! 0
�
7�! M0=.M˝Jx/

there is an unique

0 // M0 // M // Kx
// 0 ;

up to isomorphism with fixedM, such thatL!M lifts to L!M0. We call this the
sequence associated toL!M relative toˆx , or for short theassociated sequence, and
ŒM0� theassociated̂ x-neighbour. It follows thatı.M0/� ı.L;M/Cdx .

We summarise this as follows.

5.4.4 Lemma. If L!M is a maximal subbundle, then the associatedˆx-neighbourŒM0�

hası.M0/D ı.M/Cdx , andX
.ŒM�;ŒM0�;m/2Ux.ŒM�/

ı.M0/Dı.M/Cdx

m D #
n

L 2 P1
�
M=.M˝Jx/

� ˇ̌̌
9L!M maximal subbundle
with L�L .mod M˝Jx/

o
: �

5.4.5 Definition. Let x be a place. Define the number

mX D maxf2gX �2;0g ;

and let the divisorD represent a classŒD� 2 ClOx
X D ClX =hxi.

We define thecuspCx.D/ (ofD in Gx) as the full subgraph ofGx with vertices

Vert Cx.D/ D
˚
cD0

ˇ̌
ŒD0�� ŒD� .mod hxi/; and degD0 >mX

	
;

and thenucleusNx (of Gx) as the full subgraph ofGx with vertices

Vert Nx D
˚
ŒM� 2 PBun2X

ˇ̌
ı.M/�mX Cdx

	
:

5.4.6 Theorem.Letx be a place andŒD� 2ClX be a divisor of non-negative degree. The
ˆx-neighboursv of cD with ı.v/D degDCdx are given by the following list:

.c0; cx ;qC1/ 2 Ux.c0/;

.cD; cDCx ;2/ 2 Ux.cD/ if ŒD� 2 .Cl0X/Œ2��f0g;

.cD; cDCx ;1/; .cD; c�DCx ;1/ 2 Ux.cD/ if ŒD� 2 Cl0X � .Cl0X/Œ2�; and

.cD; cDCx ;1/ 2 Ux.cD/ if degD is positive.

For all ˆx-neighboursv of cD not occurring in this list,ı.v/ < ı.cD/Cdx . If furthermore
degD > dx , thenı.v/D degD�dx , and ifdegD >mX Cdx , then

Ux.cD/ D f.cD; cD�x ;qx/; .cD; cDCx ;1/g :



5.4 Geometric classification of edges 85

Proof. By Lemma 5.4.4, thê x-neighboursv of cD with ı.v/D ı.cD/Cdx counted with
multiplicity correspond to the maximal subbundles of a rank2 bundleM that represents
cD. Sinceı.M/D ı.cD/ � 0, the list of allˆx-neighboursv of cD with ı.v/D degDC
dx D ı.cD/Cdx follows from the different cases in Proposition (5.3.7) (i) and (iii). Be
aware thatcD D c�D by Proposition 5.2.3; hence it makes a difference whether or notD

is 2-torsion.
For the latter statements, writeM D LD˚OX and letM0 be a subsheaf ofM with

cokernelKx such thatı.M0/ < ı.M/C dx . ThenLD !M does not lift toM0, but
LDJx!M0 is a line subbundle and

M0=LDJx ' .detM0/.LDJx/
_
' .detM/Jx.LDJx/

_
' LDJx.LDJx/

_
' OX :

If degD > dx , then

ı.LDJx ;M
0/ D degLDJx �degOX D degD�dx > 0 :

Proposition 5.3.7 (i) implies thatLD !M is the unique maximal subbundle ofM0 and
thusı.M0/D ı.M/�dx .

If ı.M/ > mX Cdx , thenı.M0/ > mX � 2gX � 2, henceM0 decomposes and repre-
sentscD�x . Since the multiplicities of all̂ x-neighbours of a vertex sum up toqxC 1,
this proves the last part of our assertions.�

5.4.7 Applying the proposition to the vertices of the cuspCx.D/ determines all edges that
lie in the cusp. IfmX < degD � mX Cdx , the cusp can be illustrated as in Figure 5.1.
Note that a cusp is an infinite graph. It has a regular pattern that repeats periodically. In
diagrams we draw the pattern and indicate its periodic continuation with dots.

1 1 11

cD+x cD+2x cD+3xcD

qx qx qx

Figure 5.1: A cusp

5.4.8 Remark. Note that the notationcD for vertices inPBundec
2 X coincides with the

notation for the vertices in the examples of section 4.3.

We summarise the theory so far in the following theorem that describes the general
structure ofGx .
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5.4.9 Theorem.Letx be a place of degreedx andhX the class number, then:

(i) Gx hashXdx cusps and

Gx D Nx [

a
ŒD�2ClOx

F

Cx.D/ ;

whereVert Nx\Vert Cx.D/D fcDg if D representsŒD� andmX < degD �mXC
dx . The union of the edges is disjoint.

(ii) Nx is finite and has#
�
ClOx

F =2ClOx
F

�
components. Each vertex ofNx is at dis-

tance� .2gX CmX C dx/=dx from some cusp. The associated CW-complexes of
Nx andGx are homotopy equivalent.

(iii) If ŒD� 2 ClOx
F , thenVert Cx.D/� PBundec

2 X . Furthermore

PBundec
2 X � fv 2 Vert Gx j ı.v/� 0g ;

PBungi
2 X � fv 2 Vert Gx j ı.v/� 2g�2g and

PBuntr
2X � fv 2 Vert Gx j ı.v/ < 0 and eveng :

Proof. The number of cusps is #ClOx
X D #.ClX =hxi/ D #Cl0X �#.Z=dxZ/ D hXdx .

That the vertices of cusps are disjoint and only intersect in the given point with the nucleus,
is clear by definition. Regarding the edges, recall from paragraph 4.4.2 that if there is an
edge fromv tow in Gx , then there is also an edge fromw to v. But Theorem 5.4.6 implies
that each vertex of a cusp that does not lie in the nucleus only connects to a vertex of the
same cusp, hence every edge ofGx either lies in a cusp or in the nucleus, and we have
proven (i).

The nucleus is finite sincePBunindec
2 X is finite by Corollary 5.3.5 and the intersection

PBundec
2 X \Vert Nx is finite by the definition of the nucleus and Proposition 5.2.3. Since

the cusps are contractible as CW-complexes,Nx andGx have the same homotopy type.
Therefore the number of components is #

�
ClOx

F =2O
x
F

�
by Proposition 4.4.11. By Lemma

5.4.4, every vertexv has â x-neighbourw with ı.w/D ı.v/Cdx , thus the upper bound
for the distance of vertices in the nucleus to one of the cusps. This proves (ii).

The four statements of Part (iii) follow from the definition of a cusp, Proposition
5.3.7 (iv), Proposition 5.3.2 and Proposition 5.3.8, respectively.�

5.4.10 (Remark on Figure 5.2)Define h D hX , m D mX and d D dx . Further let
D1; : : : ;Dhd be representatives for ClOx

F with m < degDi � mC d for i D 1: : : ;hd .
The cuspsCx.Di /, i D 1; : : : ;hd , can be seen in Figure 5.2 as the regions in the dotted
squares that are open to the right. The nucleusNx is contained in the dotted rectangle to
the left. Since we have no further information about the nucleus, we leave the area in the
rectangle open.

Theı-line on the bottom of the picture indicates the valueı.v/ for the verticesv in the
graph that lie vertically aboveı.v/.

The dotted lines refer to the vertices, which are elements of eitherPBungi
2 X , PBuntr

2X ,
or PBundec

2 X . These lines are drawn with reference to theı-line to reflect part (iii) of the
theorem.
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5.4.11 Example (The projective line).LetX be the projective line overFq . ThengX D 0,
hX D 1 andX has a closed pointx of degree1. This means that

PBundec
2 X D fcnxgn�0 :

Since an indecomposable bundleM must satisfy bothı.M/ � 0 andı.M/ � �2 which
is impossible, all projective line bundles decompose. Theorem 5.4.6 together with the
fact that the weights around each vertex sum toqC 1 in the graph of̂ x determinesGx
completely, as illustrated in Figure 5.3, and we recover the result from Example 4.3.5.

q+1 1 1 1

c0

q q q

c3xc2xcx

Figure 5.3: The graph of̂ x for a degree one placex of a rational function field

We conclude this section with two useful lemmas. Recall thatLx denotes the line
bundle associated to the divisor classŒx� 2 ClX .

5.4.12 Lemma.Consider an exact sequence

0 // L˚L0 // M // Kx
// 0 :

If L!M is not a subbundle, thenM 'LLx˚L0.

Proof. BecauseL!M is not a subbundle, it extends to a subsheafLLx !M, and
consequently we obtain a short exact sequence

0 // LLx˚L0 // M // F // 0

with some torsion sheafF . But degF D degM� .degLCdegLxCdegL0/D 0, thusF

is the zero sheaf, andLLx˚L0!M an isomorphism. �

5.4.13 Lemma.LetL!M be a line subbundle and

0 // M0 // M // Kx
// 0

the associated sequence. LetL0 DM=L. If M 'L˚L0, thenM0 'L˚L0Jx .

Proof. Note thatM0=L' .detM/JxL_ 'L0Jx . The hypothesis can be illustrated by:

0 // L // M0 //

��

L0Jx //

||yy
yy

yy
yy

� _

��

0

0 // L // M // L0 //tt
0 :

Since the compositionL0Jx !M!Kx is zero,L0Jx !M lifts to L0Jx !M0, and
the upper sequence also splits.�
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5.5 Automorphic forms on graphs

Since we know the structure ofGx for placesx in general, we are able to describe a strategy
to discover unramified automorphic forms as functions on VertGx by solving eigenvalue
equations for̂ x . To have a notation that suits our translation of automorphic as functions
on graphs, we putf .Œg�/ WD f .g/ for Œg� 2 Vert Gx .

5.5.1 Since all functions on VertGx are smooth,K-finite andGFZA-invariant, only the
condition of moderate growth (paragraph 1.3.3) needs some consideration. It is easily seen
to be equivalent with the existence of constantsC andN such that for every divisorD of
positive degree, one hasf .cD/ � CqN degD. This means that the growth behaviour on
cusps should be at most polynomial inqdegD.

5.5.2 Example (Eigenfunctions on the projective line).We begin with calculating eigen-
functions in the easiest case. LetX be the projective line overFq andx a place of degree
1. Note thathX D 1. Recall thatGx looks like:

q+1 1 1 1

c0

q q q

c3xc2xcx

We investigate the spaceA.ˆx ;�/
K , i.e. we search for functions on VertGx that satisfy

the eigenvalue equation̂x.f /D �f . Evaluating this equation at the vertices yields

�f .c0/ D ˆx.f /.c0/ D .qC1/f .cx/

and fori � 1; �f .cix/ D ˆx.f /.cix/ D f .c.iC1/x/C qf .c.i�1/x/;

or equivalently that

f .cx/ D �.qC1/�1f .c0/

and fori � 1; f .c.iC1/x/ D �f .cix/ � qf .c.i�1/x/:

which determines all valuesf .cix/ for i � 1 if f .c0/ and� are given. ThusA.ˆx ;�/K

is 1-dimensional for any�. From Theorem 3.6.2 together with Lemmas 3.7.2 and 3.7.3,
we know that there is precisely one setf�;��1g such that QE. � ;�/ is an eigenfunction of
ˆx with eigenvalue�, so QE. � ;�/ spansA.ˆx ;�/K , and—up to a constant multiple—its
values at the vertices can be calculated by the equations we have just found.

Since these calculations hold for arbitrary� 2 C, we have proven that there are no
unramified cusp forms for the projective line.

5.5.3 Let X be any projective smooth irreducible curve overFq and letx be a place of
degreedx . Choose a divisorD withmX < degD�mXCdx and consider the cuspCx.D/:

1 1 11

cD+x cD+2x cD+3xcD

qx qx qx

Let f 2A.ˆx ;�/
K , then we obtain from evaluating the eigenvalue equationˆxf D �f

for everyi � 1,

f .cDC.iC1/x/ D �f .cDCix/ � qf .cDC.i�1/x/ :



90 Geometry of Hecke operators CHAPTER 5

Thus the restriction off to VertCx.D/ is determined by the eigenvalue�, once its values
at cD andcDCx are given, but there is no further restriction onf .cD/ andf .cDCx/.

This consideration justifies that we only have to evaluate the eigenvalue equation at
vertices of the nucleus to determine the eigenfunctions ofˆx . If f vanishes at two consec-
utive vertices of a cusp, then it vanishes at all vertices of the cusp. We conclude thatf re-
stricted to the vertices of a cusp has compact support if and only iff .cD/D f .cDCx/D 0.

5.5.4 We proceed witheE.ˆx ;�/K . We know from Theorem 3.6.2 together with Lem-
mas 3.7.2 and 3.7.3 that this space ishXdx-dimensional, and all nontrivial elements are
functions that have non-compact support. Even if we restrict the domain of these func-
tions to the vertices of the cusps, they span anhXdx-dimensional space since otherwise,eE.ˆx ;�/K would contain â x-eigenfunctions that vanishes at all vertices on the cusps
and thus would be a cusp form, which contradicts the decomposition in Theorem 3.6.2.

Applying the results from paragraph 5.5.3, we see that the functions ineE.ˆx ;�/K
are determined by their values in the2hXdx divisor classes of degreesmX C1; : : : ;mX C
2dx . Evaluating the eigenvalue equation at all vertices of the nucleus defines anhXdx-
dimensional subspace of the functions on these divisor classes.

In paragraph 3.7.17, we defined a finite setS of places such that for any� 2 „0,
the span of QE. � ;�/ equals the intersection of alleE.ˆx ;�x.�//K with x 2 S . Thus we
can determineQE. � ;�/ up to a constant multiple by evaluating the eigenvalue equations
ˆxf D �x.�/f at all vertices of the nucleiNx for all x 2 S if there are no nontrivial cusp
forms that have the same eigenvalues�x.�/ for ˆx for all x 2 S .

5.5.5 Residues of Eisenstein series fit perfectly in the picture of the completed Eisenstein
part, but on the graph, they can be described in a particularly simple way: Theorem 2.4.2
states that if�D ! j j˙1=2 2„0 with !2 D 1, then the residueQE. � ;�/ is nothing else but
a constant multiple of! ıdet.

In Section 4.5 we defined a labelling of the vertices by taking the determinant

Vert Gx D GF nGA =KZA
det
�! F �

nA� =O�
A QA ' ClF =2ClF :

Since!2 D 1, this character factors through ClF =2ClF , and! ıdet is thus a function
that assigns to the vertices ofGx the valueṡ 1 depending on their label. The residue
QE. � ;�/ is aˆx-eigenfunction with eigenvalue.qxC1/ if the values of adjacent vertices

have the same sign, and the eigenvalue is�.qxC1/ if the values of adjacent vertices have
opposite signs.

5.5.6 The HK-eigenfunctions that are cusp forms are characterised as thoseHK-eigen-
functions with compact support. More precisely, from paragraph 5.5.3, it follows that the
support of a cusp form is contained in the set of verticesv 2 Gx with ı.v/ �mX , a finite
set. In particular the space of unramified cusp formsAK

0 is finite dimensional. By the
multiplicity one theorem (3.5.3),AK

0 has a basis ofHK-eigenfunctions, which are unique
up to constant multiple. SinceAK

0 is finite dimensional, there is a finite setS � jX j such
that the Hecke operatorŝx for x 2 S can distinguish these basis vectors.

5.5.7 We give a reformulation in terms of the matrix associated toGx as defined in para-
graph 4.1.8. LetMx be the matrix associated tôx . This infinite dimensional matrix is
characterised by the property thatˆxf DMxf for everyf 2AK , whereMxf is defined
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by identifying an unramified automorphic form with the infinite dimensional vector con-
sisting of its values at all vertices ofGx . An unramified automorphic formf is thus â x-
eigenfunction with eigenvalue� if and only if it lies in the kernel ofMx.�/DMx �� �1.

Define the submatrix.M 0
x.�//v;v0 , where the row index ranges overv 2 Vert Nx , i.e.

over the verticesv with ı.v/ � mX C dx , and the column index ranges over allv0 2 V ,
whereV � Vert Gx is subset of verticesv0 with ı.v/�mX C2dx .

Let A denote the space of functions onV . ThenM 0
x.�/ can be seen as the restriction

of Mx.�/ to A, where we delete all rows ofMx.�/ that have entries outsideV . The
restriction mapAK ! A induces a bijection of the kernel ofMx.�/ with the kernel of
M 0
x.�/ because a function that satisfies the eigenvalue equation at allv 2 V determines a

uniqueˆx-eigenfunction on VertGx , see paragraph 5.5.3.
Since there arehXdx verticesv 2 Gx with mXCdx < ı.v/�mXC2dx , the kernel of

M 0
x.�/ has at least dimensionhXdx independent of the value of�. On the other hand, there

are only finitely many values for� such that the kernel ofM 0
x.�/ has a larger dimension.

We know from paragraph 5.5.4 thathXdx linearly independent functions of the com-
pleted Eisenstein part lie in the kernel, which are characterised by the property that they
do not vanish on all verticesv with mX < ı.v/�mX C2dx . This means that we can sort
out the cusp form by looking at the functions in the kernel ofM 0

x.�/ that vanish on all
verticesv with mX < ı.v/�mX C2dx .

5.5.8 Remark. When we want to determine the cusp forms that areHK-eigenfunctions,
we look for the solutions of a system of linear equations with integer coefficients, which
contain the eigenvalues for Hecke operators as parameters. The cusp forms occur if these
eigenvalues satisfy certain algebraic relations, which occur as vanishing condition on de-
terminants of submatrices ofMx.�/ as considered in the previous paragraph. This means
that the eigenvalues are algebraic numbers. Moreover, the degree of the defining algebraic
relations is bounded by the number of verticesv with ı.v/ � mX , since only for these
vertices, the eigenvalue equation can contain a non-zero multiple of the eigenvalue.

5.5.9 Example (Derivatives of Eisenstein series).We will show in the example of the
projective lineX over Fq and a placex of degree1 how to determine the derivatives of
Eisenstein series (or residues) as functions on VertGx D fcixgi�0.

Let � 2„0 with �2 ¤ 1, then we know from Theorem 3.6.2 that

ˆx. QE
.1/.cix ;�// D �x.�/ QE

.1/.cix ;�/C lnqx �
�
x .�/

QE.cix ;�/

for all i � 0. For better readability, putf D QE. � ;�/, f 0 D QE.1/. � ;�/, � D �x.�/ and
�� D lnqx ��

x .�/. Calculatinĝ x. QE
.1/.cix ;�// for everyi � 0 gives:

f 0.cx/ D .qC1/�1
�
�f 0.c0/C �

�f .c0/
�

and fori � 1; f 0.c.iC1/x/ D �f 0.cix/ � qf
0.c.i�1/x/C �

�f .cix/:

Since we have already determinedf D QE. � ;�/ (up to a constant multiple), this system
of equations determinesf 0 D QE.1/. � ;�/ up to a constant multiple.

Note that in case�2 D 1, one obtains the same results, but the constants look different.

5.5.10 Remark. This strategy generalises to a way of determining all functions ineEK .
Thus we are able to determine the values of each unramified admissible automorphic form
by solving a finite system of linear equations.
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5.5.11 Example (An automorphic form that is not admissible).LetX be the projective
line andx a place of degree1. Definef 2AK by f .c0/D 1 andf .cix/D 0 for all i � 1.

Thenˆx.f / is the function witĥ x.f /.c0/D 0, ˆx.f /.cx/D qC 1 and trivial on
all cix with i � 2. One shows by induction onn that the support̂ nx.f / is contained in
fcixgiD0;:::;n and that̂ n

x.f /.cnx/D qC1.
Thus the set of functionsfˆnx.f /gn�0 spans an infinite dimensional space inAK , and

we see thatf is not admissible.
Note that the space of unramified automorphic forms with compact support is invariant

under the action ofHK . The subspace of admissible functions is preciselyAK
0 . Therefore,

every unramified automorphic form with compact support that is not anHK-eigenfunction
is not admissible.



CHAPTER 6

The theory of toroidal automorphic forms

In this chapter, the theories of the previous chapters combine into the main re-
sults of this thesis about the space of unramified toroidal automorphic forms.
The first step is to prove their finite dimensionality, which implies that they are
contained in the direct sum of the Eisenstein, residual and cuspidal part. This
chapter shows that the Eisenstein part admits a.gF � 1/hF C 1-dimensional
subspace of unramified toroidal automorphic forms and the residual part con-
tains no nontrivial toroidal automorphic form at all. A translation of a result
of Waldspurger from number fields to global function fields would clarify the
question of the existence of toroidal cusp forms. Finally, the question of unita-
rizability and the connection with the Riemann hypothesis are discussed.

6.1 Finite dimensionality

In this section, we will give a finite upper bound for the dimension of the spaceAK
tor.E/ of

unramified toroidal automorphic forms of the quadratic constant field extensionEDFq2F

overF . In particular, this shows that the spaceAK
tor of unramified toroidal automorphic

forms is finite dimensional.

6.1.1 Letp WX 0!X be the map of curves that corresponds to the field extensionE=F . If
f is an unramified automorphic form andMDMg 2 Bun2X for g 2GA (Lemma 5.1.6),
then we writef .ŒM�/D f .g/, whereŒM� 2 PBun2X is the class represented byM.

Let T be a torus corresponding to the inclusion

‚E W E
�
' AutE .E/ ,! AutF .E/

�
�!GF

of the units ofE given by a basis ofE=F that is contained inFq2 , cf. paragraph 1.5.2.
Recall from paragraph 1.5.12 the definition

fT .g/D

Z
TFZA nTA

f .tg/dt :

6.1.2 Theorem. If T is as above andcT D vol.TFZA nTA/=#
�
PicX 0 =p�.PicX/

�
, then

for all f 2AK ,
fT .e/ D cT �

X
ŒL�2PicX 0 =p�.PicX/

f .Œp�L�/ :

93
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Proof. To avoid confusion, we writeAF D A. We introduce the following notation. For
anx 2 jX j that is inert inE=F , we defineOE;x WDOE;y , wherey is the unique place that
lies overx. For anx 2 jX j that is split inE=F , we defineOE;x WDOE;y1

˚OE;y2
, where

y1 andy2 are the two places that lie overx. Note that there is no place that ramifies. Let
OEx

denote the completion ofOE;x . ThenOEx
is a free module of rank2 overOFx

DOx
for everyx 2 jX j.

The basis ofE overF that definesT is contained inFq2 . It is thus a basis ofOEx
over

OFx
for everyx 2 jX j. This shows at once that‚�1

E .K/DO�
AE

and that the diagram

E� nA�
E =O�

AE

1W1 //

‚E

��

PicX 0

p�

��
GF nGAF

=K
1W1 // Bun2X

commutes, where the horizontal arrows are the bijections as described in paragraph 5.1.5.
The action ofAF on E� nA�

E =O�
AE

andGF nGAF
=K by scalar multiplication is

compatible with the action of PicX on PicX 0 and Bun2X by tensoring in the sence that all
maps in the above diagram become equivariant if we identify PicX with F � nA�

F =O�
AF

,
cf. Lemma 5.1.6. Taking orbits under these compatible actions yields the commutative
diagram

E�A�
F nA�

E =O�
AE

1W1 //

‚E

��

PicX 0 =p� PicX

p�

��
GFZAF

nGAF
=K

1W1 // PBun2X :

Sincef is rightK-invariant, we may take the quotient of the domain of integration
by TAF

\K D ‚E .O
�
AE
/ from the right and we obtain the assertion of the theorem for

some still undetermined value ofc. The value ofc is computed by plugging in a constant
function forf . �

6.1.3 Remark. We are fortunate to find a torus that has such a particularly simple de-
scription. If the basis elements ofE overF have nontrivial valuation at some place—
which necessarily happens ifE is a quadratic extension different from the constant field
extension—, then the inverse image ofK D

Q
x2jX jG.Ox/ underA�

E ,! GAF
does not

equalO�
AE

.
It seems very unlikely to me that in the general case,TA corresponds to the image of

p� W PicX 0 =p� PicX ! PBun2X , but it is rather the image of a certain extension of the
Picard group that captures information about the valuation of the basis elements.

6.1.4 Write ClprX for the set of divisor classes that are represented by prime divisors
and CleffX for the semigroup they generate, viz. for all classes that are represented by
effective divisors. In particular, CleffX contains0, the class of the zero divisor, and for all
otherŒD� 2 Cleff, degD > 0. Denote by Cld X the set of divisor classes of degreed and
by Cl�d X the set of divisor classes of degree at leastd . LetgX be the genus ofX .

6.1.5 Lemma.
Cl�gX X � CleffX :
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Proof. Let C be a canonical divisor onX , which is of degree2gX � 2. For a divisorD,
definel.D/D dimFq

H 0.X;LD/. We haveŒD� 2 CleffX if and only if l.D/ > 0, cf. [28,
Section IV.1]. The Riemann-Roch theorem is

l.D/ � l.D�C/ D degD C 1 � gX ;

cf. [28, Thm. IV.1.3].
If now ŒD� 2 Cl�gX X , then degD � gX and the Riemann-Roch theorem implies that

l.D/� degDC1�gX > 0. �

6.1.6 LetD be an effective divisor. Then it can be written in a unique way up to permu-
tation of terms as a sum of prime divisorsD D x1C : : :Cxn. We set̂ D D ˆx1

� � �ˆxn
.

Recall from Lemma 1.4.15 thatHK is commutative, sô D is well-defined. Further we
briefly writeGD for the graphGˆD ;K of ˆD, andUD.v/ for UˆD ;K.v/.

Let ŒD� 2 ClX . Recall from paragraph 5.1.3 thatLD denotes the associated line bun-
dle and from paragraph 5.2.2 thatcD denotes the vertex that is represented byLD˚OX .
Recall from Proposition 5.3.7 (iv) thatı.cD/D degD, whereı is as defined in paragraph
5.3.1.

6.1.7 Lemma. LetD be an effective divisor of positive degree.

(i) Letv;v0 2 Vert GD. If v0 is aˆD-neighbour ofv, thenjı.v0/� ı.v/j � degD.

(ii) Moreover,
.c0; cD;qC1/ 2 UD.c0/ ;

and for all other edges.c0;v;�/ 2UD.c0/, the inequalityı.v/ < degD holds.

Proof. We do induction on the number of factors in̂D D ˆx1
� � �ˆxn

with x1; : : : ;xn
being prime divisors. Putx D xn.

If n D 1, thenˆD D ˆx . Assertion (i) follows from Proposition 5.4.2 and assertion
(ii) follows from Theorem 5.4.6.

If n > 1, we can writê D D ˆD0ˆx for the effective divisorD0 D x1C�� �Cxn�1,
which is of positive degree degD0 D degD�degx. Assume that (i) and (ii) hold forD0.

We prove (i). Letv0 be aˆD-neighbour ofv. By Proposition 4.1.7, there is av00

that is aˆD0 -neighbour ofv and aˆx-neighbour ofv0, thus the inductive hypothesis and
Proposition 5.4.2 implyˇ̌

ı.v0/� ı.v/
ˇ̌
�
ˇ̌
ı.v0/� ı.v00/

ˇ̌
C
ˇ̌
ı.v00/� ı.v/

ˇ̌
� degD0

Cdegx D degD :

We prove (ii). By the inductive hypothesis, there is precisely one edge.c0;v
0;m/ in

UD0.c0/ with ı.v0/ D degD0, namely,.c0; cD0 ;qC 1/. By Theorem 5.4.6, there is pre-
cisely one edge.cD0 ;v;m0/ in Ux.cD0/ with ı.v/� ı.cD0/D degx, namely,.cD0 ; cD;1/.
Proposition 4.1.7 together with (i) implies (ii). �

6.1.8 Theorem.The dimension of the space of unramified toroidal automorphic forms is
finite, bounded by

dimAtor.E/
K
� #

�
PBun2X �fcDgŒD�2CleffX

�
;

whereE=F is the constant field extension.
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Proof. First remark that given the inequality in the theorem, finite-dimensionality follows
since the right hand set is finite. Indeed, by Lemma 6.1.5,

PBun2X �fcDgŒD�2CleffX �
˚
v 2 PBun2X j ı.v/�mX

	
sincemx Dmaxf0;2gX �2g � gX �1, and the latter set is finite.

We now proceed to the proof of the inequality. Letf 2Ator.E/
K . We will show by

induction ond D degD that the value off at a vertexcD with ŒD� 2 CleffX is uniquely
determined by the values off at the elements ofPBun2X � fcDgŒD�2CleffX . This will
prove the theorem.

By Proposition 1.5.15 and Theorem 6.1.2, the condition forf to lie in Ator.E/
K readsX

ŒL�2.PicX 0 =p� PicX/

ˆ.f /.Œp�L�/ D 0 ; for all ˆ 2H :

If d D 0, takeˆ as the identity element inHK . We know from Proposition 5.3.8 that
p�.PicX 0 =p� PicX/D PBuntr

2X [fc0g, sof .c0/ equals a linear combination of values
of f at verticesv in PBuntr

2X , which all satisfyı.v/ < 0. Since the zero divisor class is
the only class in CleffX of degree0, we have proved the cased D 0.

Next, letD be an effective divisor of degreed > 0, and put̂ D ˆD. If v is aˆD-
neighbour ofw, thenı.v/ andı.w/ can differ at most byd (Lemma 6.1.7 (i)). Therefore
all ˆD-neighboursv of vertices inPBuntr

2X haveı.v/ < d . The vertexcD is the only
ˆD-neighbourv of c0 with ı.v/D d (Lemma 6.1.7 (ii)). Thus

0 D

X
L2.PicX 0 =p� PicX/

ˆD.f /.Œp�L�/ D .qC1/f .cD/ C

X
L2.PicX 0 =p� PicX/;

.Œp�L�;v;�/2UD.Œp�L�/

ı.v/<d

� f .v/

determinesf .cD/ as the linear combination of values off at verticesv with ı.v/ < d . By
the inductive hypothesis,f .cD/ is already determined by the values off at vertices that
are not contained infcDgŒD�2CleffX . �

6.1.9 Theorem.The spaceAnr
tor of unramified toroidal automorphic forms is admissible.

Proof. This follows from Theorem 6.1.8 by Theorem 3.6.3.�

Recall from Example 5.4.11 that for the function field of the projective line overFq ,
every projective line bundle is of the formcnx for some non-negative integern, wherex
is a place of degree1. So Theorems 6.1.8 and 3.6.3 immediately imply:

6.1.10 Theorem.If X is the projective line overFq , thenAnr
tor.E/ D 0. �

6.1.11 The finite dimensionality of the space of unramified toroidal automorphic forms
implies thatAK

tor � AK
adm. By Theorem 3.6.3, we obtain the following decomposition,

whereEKtorDAK
tor\E is the space of unramified toroidal automorphic forms in the Eisen-

stein part,RK
tor D AK

tor\R is the space of unramified toroidal automorphic forms in the
residual part andAK

0;torDAK
tor\A0 is the space of unramified toroidal cusp forms.

6.1.12 Corollary. AK
tor D EKtor ˚ RK

tor ˚ AK
0;tor :
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This allows us to investigate the Eisenstein part, the residual part and the cuspidal
separately in the follwing three sections.

6.1.13 Example (Finite dimensionality in a ramified case).LetX be the projective line
overFq andx a place of degree1. ConsiderK 0 D fk 2K j kx �

�
1
1

�
.mod�x/g, which

is the same subgroup as in Example 4.3.9. Recall this example, in particular the definitions
of c0

0 andc0
nx;w for n � 0 andw 2 P1.�x/, the definitions of the Hecke operatorŝ0x and

ˆ0
y;
 for a placey ¤ x of degree1 and
 2GFq

as well as the illustrations of their graphs
in Figures 4.9 and 4.8, respectively.

Taking these results on trust, we can prove thatAK0

tor is finite dimensional by the same
strategy that we used in the proof of Theorem 6.1.8, namely, we do an induction ond to
show that ford � 2, the value of anf 2 AK0

tor at a vertexv with ı.v/ D d is uniquely
determined by the values off at the verticesv0 with ı.v0/� d .

Let d D 2. In the present case, Theorem 6.1.2 yieldsf .c0
0/D 0. If we applyˆ0

y;e to
this equation, wheree denotes the identity matrix, then we getX

w2P1.�x/

f .c0
x;w/ D 0 ;

if we applyˆ0
x to it, we get X

w2P1.�x/
w¤Œ0W1�

f .c0
x;w/ D 0 :

Substracting the latter from the former equation yieldsf .c0
x;Œ0W1�

/ D 0. If now v is a

vertex withı.v/D 2, i.e.v D c0
2x;w for somew 2 P1.�x/, we choose a
 2GFq

such that
w D Œ0 W 1�
 and obtain by applyinĝ 0

y;
 to f .c0
x;Œ0W1�

/D 0 that

qf .c0
0/C f .c

0
2x;w/ D 0

and thusf .c0
2x;w/D 0.

If d > 2, thenv D c0
dx;w

for somew 2 P1.�x/. Applying .ˆ0
y;e/

d�2 to the equation
f .c0

2x;w/D 0 yields

f .c0
dx;w/ C

X
ı.v/<d

m.v/f .v/ D 0

for certain numbersm.v/. This completes the induction and we have thus shown thatAK0

tor
is finite-dimensional.

6.1.14 Remark. It is not difficult to generalise the inductive step to the case of an arbitrary
curveX and arbitraryK 0 <K since the graphs of Hecke operators for unramified places,
i.e. for placesy such thatK 0

y D Ky , have ‘cusps’ that behave as in the unramified case.
This can be seen, for example, in the illustration ofˆ0

y;
 in Figure 4.8.
But the initial step causes problems: For Hecke operators relative to proper subgroups

K 0 ofK, typically, the class of the identity matrixe is connected to several verticesv with
the same value forı.v/. It is not possible to show finite dimensionality by considering
only Hecke operators for unramified places; one also has to consider the more involved
Hecke operators for ramified places.

Nevertheless, we state:

6.1.15 Conjecture.The space of toroidal automorphic forms is admissible.
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6.2 Toroidal Eisenstein series

In this section, we investigate the intersection of the space of toroidal automorphic forms
with the Eisenstein part.

6.2.1 SinceAnr
tor is admissible, Theorem 3.1.9 implies thatEnr

torD E\Anr
tor is characterised

by its unramified elementsEKtor. Theorem 3.6.3 implies thatEKtor has a decomposition

EKtor D
M

f�;��1g�„0

�2¤j j
˙1

.EKtor \
eE.�/K/ ;

where only finitely many termsEKtor \
eE.�/K are nontrivial asEnr

adm is admissible. Each of
these terms has a basis of the form˚

QE. � ;�/; QE.1/. � ;�/; : : : ; QE.n�1/. � ;�/
	
;

wheren is its complex dimension.
Thus it suffices to investigate Eisenstein series of the formE. � ;�/ and their derivatives

E.i/. � ;�/ for unramified quasi-characters� in order to determineEnr
tor. We will, however,

state and prove theorems for general quasi-characters� 2„ where no additional effort is
required.

6.2.2 Let E be a separable quadratic field extension ofF . Consider an anisotropic torus
T � G, whoseF -rational points are the image ofE� under‚E W E!Mat2.F /. Recall
from paragraph 1.5.2 that this injectiveF -linear homomorphism is given by the choice of
a basis ofE overF and that it extends to‚E W A�

E ! GAF
. Let NE=F W A�

E ! A�
F be

the norm ofE overF extended to the ideles. We have that det.‚E .t//D NE=F .t/ ([38,
Prop. VI.5.6]).

Let hE denote the class number ofE and letqE be the cardinality of the constant field
of E. Consider theAF -linear projection

pr W Mat2AF �! A2F :
g 7�! .0;1/g

The kernel of pr is contained in the upper triangular matrices and does not contain any
nontrivial central matrix. Since the only maximal torus ofG that is contained in the
standard Borel subgroupB is the diagonal torus, the intersection of the upper trian-
gular matrices withTA is ZA . Thus‚E .AE /\ kerprD f0g and theAF -linear mape‚E D prı‚E W AE ! A2F is injective. We can considere‚E as a collection of mapse‚E;x for x 2 jX j. For eachx 2 jX j, this mape‚E;x is an injective homomorphism of
2-dimensionalFx-vectorspaces and necessarily surjective. This shows thate‚E is an iso-
morphism ofAF -modules.

In the natural topology as freeAF -modules,e‚E is thus a isomorphism of locally com-
pact groups. Define'T W A2F ! C ashE .qE � 1/�1.volOAE

/�1 times the characteristic
function of pr

�
‚E .OAE

/
�
. Sincee‚E is a homeomorphism,'T and also'T;g D 'T . � g/

are Schwartz-Bruhat functions for allg 2GA .
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The following observation of Hecke ([30, p. 201]) was translated by Zagier ([83, pp.
298-299]) into adelic language.

6.2.3 Theorem.Let T be an anisotropic torus corresponding to a separable field exten-
sionE=F . For every' W A2! C that is a Schwartz-Bruhat function,g 2 GA and� 2„,
there exists a holomorphic functioneT .g;';�;s/ of s 2 C with the following properties:

(i) For all s 2 C such that�2 j j2s ¤ j j˙1,

ET .g;';�;s/ D eT .g;';�;s/ LE .�ıNE=F ; sC1=2/ :

(ii) For everyg 2GA and� 2„, there is a Schwartz-Bruhat function' W A2! C such
that

eT .g;';�;s/ D �.detg/ jdetgjsC1=2

for all s 2 C. If � 2„0, then' D 'T;g�1 satisfies the equation.

Proof. Though this result is known and the following computation is done at several places
in the literature (in chronological order: [83], [81], [12]), we will show a proof because of
the relevance for this thesis.

For every' W A2 ! C that is a Schwartz-Bruhat function,g 2 GA and� 2 „, both
ET .g;';�;s/ andLE .� ıNE=F ; sC 1=2/ are meromorphic functions ofs 2 C. Define
eT .g;';�;s/ as their quotient. This is a meromorphic function ofs that satisfies (i). Before
showing thateT .g;';�;s/ is holomorphic ins, we consider part (ii).

Part (ii) needs more care. Recall from paragraph 1.5.12 that we have made choices of
Haar measures that match with the following changes of integrals. Let Res > 1=2�Re�,
then Lemma 2.5.4 applies, and we obtain

ET .g;';�;s/ D

Z
TFZA nTA

Z
ZF nZA

X
u2F 2�f0g

'.uztg/�.det.ztg// jdet.ztg/jsC1=2 dz dt :

SinceTF nTA ' .TFZA nTA/�
�
ZF nZA

�
, we can apply Fubini’s theorem (cf. paragraph

1.2.4) to derive

ET .g;';�;s/ D

Z
TF nTA

X
u2F 2�f0g

'.utg/�.det.tg// jdet.tg/jsC1=2 dt :

The map‚E identifiesA�
E with TAF

. TheAF -linear isomorphisme‚E identifiesAE with
A2F and restricts to a bijection betweenE� andF 2�f0g. Thus we can rewrite the integral
as

�.detg/ jdetgjsC1=2
Z

E� nA�
E

X
u2E�

'.e‚E .ut/g/�.NE=F .t// ˇ̌NE=F .t/ˇ̌sC1=2 dt :
If we define Q'g D '

�e‚E . � /g� W AE ! C and apply Fubini’s theorem again, we get

ET .g;';�;s/ D �.detg/ jdetgjsC1=2
Z

A�
E

Q'g.t/�ıNE=F .t/ jt j
sC1=2
AE

dt :
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Note that Q'g W AE ! C is a Bruhat-Schwartz function as' is one. Thus the integral is the
Tate integralLE . Q'g ;�ıNE=F ; sC1=2/.

Theorem 2.2.7 implies that there is a Schwartz-Bruhat function W AE !C such that

LE . ;�ıNE=F ; sC1=2/ D LE .�ıNE=F ; sC1=2/ :

If we define' W A2F ! C to be the Schwartz-Bruhat function such that D Q'g , then

eT .g;';�;s/D �.detg/ jdetgjsC1=2. If � 2„0, then�ıNE=F is an unramified character
of AE and

 D 'T;g�1

�e‚E . � /g�D 'T ıe‚E
yields the desired as it adopts the role of 0 in Theorem 2.2.7. Hence (ii) holds by
meromorphic continuation.

Let' be arbitrary. By Theorem 2.2.7,LE . ;�ıNE=F ; sC1=2/ equals a holomorphic
multiple ofLE .� ıNE=F ; sC 1=2/ in s 2 C for any Schwartz-Bruhat function D Q'g ,
thuseT .g;';�;s/ is holomorphic ins 2 C. �

For any Schwartz-Bruhat function' W A2! C and anyg 2GA we have that the auto-
morphic formg:E. � ;';�/ is an element ofP .�/ (paragraph 2.3.22). By the definition of
E-toroidality, we obtain as an immediate consequence:

6.2.4 Corollary. Let� 2„ such that�2¤ j j˙1 and let' WA2!C be a Schwartz-Bruhat
function. LetE=F be a quadratic separable field extension. ThenE. � ;';�/ isE-toroidal
if and only ifLE .�;1=2/D 0.

6.2.5 We establish the analogue of Hecke’s theorem for a split torus. LetT Df
�

�
�

�
g �G

be the diagonal torus. We again writeA for the adeles ofF . Define the Schwartz-Bruhat
function'T W A2! C ashF .q�1/�1.volOA/

�1 times the characteristic function ofO2
A ,

which is the same as'0 as defined in paragraph 2.3.20. Put'T;g D 'T . � g/, which is again
a Schwartz-Bruhat function since multiplying withg from the right is an automorphism of
the locally compact groupA2F .

Recall from paragraph 2.3.20 that we definedf';�.s/ 2P .� j js/ as

f';�.s/.g/D

Z
ZA

'..0;1/zg/�.det.zg// jdet.zg/jsC1=2 dz

for Res > 1=2�Re�. Pute D
�
1
1

�
andw0 D

�
1

1

�
.

6.2.6 Lemma. Let T be the diagonal torus. For every' W A2 ! C that is a Schwartz-
Bruhat function,g 2 GA and� 2„, there exists a holomorphic functionQeT .g;';�;s/ of
s 2 C with the following properties.

(i) For all s 2 C such that�2 j j2s ¤ j j˙1,Z
TFZA nTA

�
E.tg;';�;s/�f';�.s/.tg/�f';�.s/.w0tg/

�
dt

D QeT .g;';�;s/
�
L.�;sC1=2/

�2
:

In particular, the left hand side is well-defined and converges.
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(ii) For everyg 2GA and� 2„, there is a Schwartz-Bruhat function' W A2! C such
that

eT .g;';�;s/ D �.detg/ jdetgjsC1=2

for all s 2 C. If � 2„0, then' D 'T;g�1 satisfies the equation.

Proof. Let Res > 1=2�Re�, and denote the left hand side of the equation in (i) byI .
Recall from paragraph 1.5.12 that we have made choices of Haar measures that match
with the following changes of integrals. We choose

˚
e;w0;

�
1
c 1

�	
c2F � as a system of

representatives ofBF nGF . By definition ofE.tg;';�;s/,

E.tg;';�;s/�f';�.s/.tg/�f';�.s/.w0tg/ D
X
c2F �

f';�.s/
��
1
c 1

�
tg
�
:

Hence

I D

Z
TFZA nTA

X
c2F �

f';�.s/
��
1
c 1

�
tg
�
dt :

Note that this is a well-defined expression since

f';�.s/
��
1
c 1

� �
zt1

zt2

��
D f';�.s/

��
zt1

zt2

� � 1
ct1t

�1
2

1

��
D f';�.s/

�� 1
ct1t

�1
2

1

��
for

�
zt1

zt2

�
2 TFZA , so changing the representative oft 2 TFZA nTA only permutes˚�

1
c 1

�	
c2F � . Substituting the definition off';�.s/, we find

I D

Z
TFZA nTA

X
c2F �

Z
ZA

'
�
.c;1/ztg

�
�.det.ztg// jdet.ztg/jsC1=2 dz dt :

By writing 'g for the Schwartz-Bruhat function'. � g/, applying Fubini’s theorem to�
TFZA nTA

�
�ZA '

�
TF nTA

�
�ZF

(cf. paragraph 1.2.4) and observing that we have detz 2 F � � ker.� j jsC1=2/ for a matrix
z 2ZF , we find

I D

Z
TF nTA

X
c2F �

Z
F �

'g..zc;z/t/ �.det.tg// jdet.tg/jsC1=2 dz dt :

We now replacec by cz�1, replace the sum by the integral over the discrete spaceF � and
use

TF nTA ' .F � nA�/� .F � nA�/ :

t 7! .t1; t2/

ThenI equals

�.detg/ jdetgjsC1=2
Z

F � nA�

Z
F � nA�

Z
F �

Z
F �

'g.ct1;at2/ �.t1t2/ jt1t2j
sC1=2 dadc dt1dt2

D �.detg/ jdetgjsC1=2
Z

A�

� Z
A�

'g.t1; t2/ �.t1/ jt1j
sC1=2 dt1

�
�.t2/ jt2j

sC1=2 dt2 :
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Let U � A2 be the compact domain of'g . Then
˚
t1 2 A

ˇ̌�
ft1g �A

�
\U ¤ ;

	
is

compact. For everyt2, the functiont1 ! 'g.t1; t2/ is locally constant onA � ft2g �
A�A endowed with the subspace topology. Consequently,'g. � ; t2/ is a Schwartz-Bruhat
function for everyt2 and the expression in brackets that we see in the last equation is
a Tate integral, which equals a multiple ofL.�;sC 1=2/ (Theorem 2.2.7). Denote the
factor by Q'g.t2/. For the same reasons as before, but with the roles oft1 andt2 reversed,
we see that'g.t1; � / is a Schwartz-Bruhat function for everyt1. Hence the value of the
Tate integral is locally constant int2 and vanishes at allt2 outside a compact set. Since
L.�;sC1=2/ does not depend ont2, the factorQ'g is locally constant and compact support.
Hence Q'g W A!C is a Schwartz-Bruhat function. Substituting the Tate integral in the last
equation byQ'g.t2/L.�;sC1=2/ yields

I D �.detg/ jdetgjsC1=2L.�;sC1=2/
Z

A�

Q'g.t2/�.detg/ jt2j
sC1=2 dt2 ;

where we see again a Tate integral, which equals a multiple ofL.�;sC1=2/.
We end up with the right hand side of the equation in (i) ifQeT .g;';�;s/ is suitably

defined. In particular, the left hand side is a well-defined and converging expression, which
is meromorphic ins 2C, andQeT .g;';�;s/ is meromorphic as the quotient of meromorphic
functions. Hence (i) holds.

By Theorem 2.2.7, there is a Schwartz-Bruhat function W A! C such that we have
L. ;�;sC 1=2/ D L.�;sC 1=2/. If we define' W A2 ! C to be the Schwartz-Bruhat
function such that'g.t1; t2/ D  .t1/ � .t2/. Then QeT .g;';�;s/ D �.detg/ jdetgjsC1=2.
If � 2„0, then'T;g�1 satisfies the equality by Theorem 2.2.7. Hence (ii) holds by mero-
morphic continuation.

By Theorem 2.2.7,L. ;�;sC 1=2/ equals a holomorphic multiple ofL.�;sC 1=2/
in s 2 C for any Schwartz-Bruhat function , thuseT .g;';�;s/ is holomorphic ins 2 C
for an arbitrary Schwartz-Bruhat function'. �

6.2.7 Recall from paragraph 2.3.9 that

EN .g;';�;s/ D f';�.s/.g/ C M�.s/f';�.s/.g/

and from Theorems 2.3.13 and 2.3.14 that there is a flat sectionOf';�.s/ and a function
c.�;s/ such that

M�.s/f';�.s/ D c.�;s/ Of';��1.�s/ and E
�
� ;f';�.s/

�
D c.�;s/E

�
� ; Of';��1.�s/

�
By paragraph 2.3.22, there is a Schwartz-Bruhat functionO' such that

Of';��1.s/ D f O';��1.s/ and E. � ; O';��1; s/ D E. � ; Of';��1.s// :

Recall from Theorem 2.2.2 that for every� 2„ there is a holomorphic function�.�;s/ of
s 2 C such that

L.�;1=2C s/D �.�;s/L.��1;1=2� s/ :
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Let T � G be a split torus. ThenTF is given as the image of‚E W E�! GF , where
E D F ˚F . Recall from paragraph 1.5.12 that in this case, we defined

fT .g/ D

Z
TFZA nTA

�
f �

1

2
.fN CfNT /

�
.tg/dt

for f 2A, where

fNT .g/ D

Z
NT

F
nNT

A

f .ng/dn D

Z
NF nNA

f .w0nw0g/dn D fN .w0g/ :

Proposition 1.5.3 implies that there is a
 2 GF such thatT D 
�1T0
 , whereT0 is
the diagonal torus. Recall the definition of'T0

for the diagonal torusT0 from paragraph
6.2.5. Define'T D 'T0;
 . Note that this definition does not depend on
 because the only
matrices that leaveT0 invariant by conjugation aree andw0. But'T0

. � w0
/D 'T0
. � 
/

by the definition of'T0
.

We now state the analogue of Theorem 6.2.3 for split tori, which is also the adelic
translation of a long-known formula ([83, eq. (30)]).

6.2.8 Theorem.LetT be a split torus. For every Schwartz-Bruhat function' W A2! C,
g 2 GA and� 2 „, there exists a holomorphic functioneT .g;';�;s/ of s 2 C with the
following properties.

(i) For all s 2 C such that�2 j j2s ¤ j j˙1,

ET .g;';�;s/ D eT .g;';�;s/
�
L.�;sC1=2/

�2
:

(ii) If � 2„0, theneT .e;'T ;�;s/D 1 for all s 2 C.

Proof. First, letT be the diagonal torus. Let� 2„0 ands 2 C such that�2 j j2s ¤ j j˙1.
We calculate:

2ET .g;';�;s/

D

Z
TFZA nTA

�
2E.tg;';�;s/ � EN .tg;';�;s/ � ENT .tg;';�;s/

�
dt

D

Z
TFZA nTA

�
2E.tg;';�;s/ � f';�.s/.tg/ � M�.s/f';�.s/.tg/

� f';�.s/.w0tg/ � M�.s/f';�.s/.w0tg/
�
dt

D

Z
TFZA nTA

��
E.tg;';�;s/ � f';�.s/.tg/ � f';�.s/.w0tg/

�
C c.�;s/

�
E.tg; O';��1;�s/ � f O';��1.�s/.tg/ � f O';��1.�s/.w0tg/

��
dt ;
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where we applied the formulas of the previous paragraph and the functional equation, cf.
Theorem 2.3.14. By Lemma 6.2.6, we can split the last integral into two and obtain:

QeT .g;';�;s/
�
L.�;sC1=2/

�2
C c.�;s/ QeT .g; O';�

�1;�s/
�
L.��1;�sC1=2/

�2
:

We apply the functional equation toL.��1;�sC 1=2/, cf. Theorem 2.2.2, and obtain (i)
for the diagonal torus if we put

eT .g;';�;s/ D
1

2
QeT .g;';�;s/ C

1

2
�.�;s/�2 c.�;s/ QeT .g; O';�

�1;�s/ :

This defineseT .g;';�;s/ as holomorphic function ofs 2C since�.�;s/ is non-vanishing
as a function ats (Theorem 2.2.2).

If T is any split torus, defineeT .g;';�;s/ D eT0
.
g;';�;s/. By Proposition 1.5.3,

there is a
 2 GF such thatT D 
T0
�1, whereT0 is the diagonal torus. Recall from
Remark 1.5.14 thatfT .g/D fT0

.
g/. This reduces the case of the general split torus to
the case of the diagonal torus. Thus (i) holds.

Regarding (ii), let�2„0 ands 2C be such that�2 j j2s ¤ j j˙1. Since we may replace
� by � j js, we assume thats D 0 without loss of generality. Recall from paragraph 2.3.22
thatE. � ;'0;�/DE. � ;�/. Putf�D f'0;�.0/ 2P .�/ andf��1 D f'0;��1.0/ 2P .��1/.
By paragraph 2.3.9, we have

EN .g;�/ D f�.g/CM�.0/f�.g/ and EN .g;�
�1/ D f��1.g/CM��1.0/f��1.g/ ;

whereN is the unipotent radical of the standard Borel subgroup.
Observe that forT D 
�1T0
 , we haveeT .e;'T ;�;s/D eT0

.
;'T0;
�1 ;�;s/. As in
the proof of (i), we may restrict to the diagonal torusT D T0 without loss of generality. We
follow the lines of the calculation in the proof of (i), where we make use of the functional
equation forE. � ;�/ (Theorem 2.3.14), the functional equation forL.�;1=2/ (Theorem
2.2.2) and Lemma 6.2.6 (ii):

2ET .e;�/ D

Z
TFZA nTA

�
2E.t;�/ � EN .t;�/ � ENT .t;�/

�
dt

D

Z
TFZA nTA

��
E.t;�/ � f�.t/ � f�.w0t /

�
C �2.c/

�
E.t;��1/ � f��1.t/ � f��1.w0t /

��
dt ;

D QeT .e;'T ;�;0/
�
L.�;1=2/

�2
C QeT .e;'T ;�

�1;0/�2.c/
�
L.��1;1=2/

�2
D
�
L.�;1=2/

�2
C �2.c/��2.c/

�
L.�;1=2/

�2
D 2

�
L.�;1=2/

�2
:

By holomorphic continuation, we findeT .e;'0;�;s/D 1 for all s 2 C. �

For any Schwartz-Bruhat function' W A2! C and anyg 2GA we have that the auto-
morphic formg:E. � ;';�/ is an element ofP .�/ (paragraph 2.3.22). By the definition of
F ˚F -toroidality, we obtain as an immediate consequence:
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6.2.9 Corollary. Let�2„0 such that�2¤ j j˙1 and let' WA2!C be a Schwartz-Bruhat
function. ThenE. � ;';�/ isF ˚F -toroidal if and only ifL.�;1=2/D 0.

6.2.10 Let T � G be a maximal torus defined by‚E W E�! GF . If E is a field, then
the reciprocity map (cf. paragraph 2.2.9) assigns to the nontrivial character of Gal.E=F /

a character ofA�
F , which we denote by�T D �E . This character is of order two and its

kernel is precisely NE=F .A�
E /. By Lemma 2.2.10,

LE .�ıNE=F ; s/ D LF .�;s/ LF .��T ; s/ :

If E D F ˚F , then define�T D �E as the trivial character. Furthermore, for every
maximal torusT of G, set

e
.i/
T .g;';�/ WD

d i

dsi
eT .g;';�;s/

ˇ̌̌
sD0

:

6.2.11 Theorem.LetT be a maximal torus inG andn a positive integer. For allg 2GA

and� 2„0 such that�2 ¤ j j˙1,

E
.n/
T .g;';�/ D

X
iCjCkDn
i;j;k�0

nŠ

iŠj ŠkŠ
e
.i/
T .g;';�/ L

.j /.�;1=2/ L.k/.��T ;1=2/ :

Proof. Observe that in both the case of an anisotropic torus and the case of a split torus, we
are taking integrals over functions with compact support, so the derivatives with respect to
s commute with the integrals. Everything follows at once from applying the Leibniz rule
to the formulas in Theorems 6.2.3 and 6.2.8.�

6.2.12 Let � 2„0 such that�2 ¤ j j˙1. We say that� is a zero ofL. � ;1=2/ of ordern if
L.�;sC1=2/ vanishes of ordern at s D 0. By the previous theorem, we see that if� is a
zero ofL. � ;1=2/ of ordern, then all the functionsE. � ;�/; : : : ;E.n�1/. � ;�/ are toroidal.

The functional equation forL-series (Theorem 2.2.2) implies that zeros come in pairs:
� is a zero of ordern if and only if ��1 is a zero of ordern, and if�D ��1, then� is a
zero of even order (Lemma 2.5.6). We callf�;��1g apair of zeros of ordern if � is a zero
of ordern in case�¤ ��1, or if � is a zero of order2n in case�D ��1.

Recall from paragraph 3.6.1 the definition of the spaceeE.�/K and its basis elements
QE.i/. � ;�/, where�2„0 andi � 0 is an integer. BecauseeE.�/K DeE.��1/K and because

in case�D ��1, we defined QE.i/. � ;�/ asE.2i/. � ;�/, we obtain that iff�;��1g is a pair
of zeros of ordern, then QE. � ;�/; : : : ; QE.n�1/. � ;�/ are toroidal and span ann-dimensional
HK-module provided that�2 ¤ j j˙1.

We summarise this.

6.2.13 Corollary. Let� 2„0 such that�2 ¤ j j˙1 andi � 0.

(i) LetE=F be a separable quadratic algebra extension. ThenQE.i/. � ;�/ isE-toroidal
if and only iff�;��1g is a zero ofL. � ;1=2/L. � �E ;1=2/ that is at least of orderi .

(ii) If f�;��1g is a pair of zeros ofL. � ;1=2/ of ordern, then QE. � ;�/; : : : ; QE.n�1/. � ;�/

are toroidal. �
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6.2.14 Theorem.The dimension ofEKtor is at least.gF �1/hF C1, wheregF is the genus
andhF the class number ofF .

Proof. Fix an idelea1 2 A� of degree1 and let!1; : : : ;!hF
2 „0 be the characters that

are trivial onha1i. Assume that!1 is the trivial character. Then for every� 2„0, there is
a uniquej 2 f1; : : : ;hF g ands 2C=.2� i= lnq/Z such that�D !j j j

s, cf. Corollary 2.1.4.
Proposition 2.2.11 proves the existence of a finite abelian unramified extensionF 0=F of
orderhF such that

hFY
iD1

LF .!i ; sC1=2/ D �F 0.sC1=2/ :

In particular the zeros of both hand sides as functions ofs are in one-to-one correspon-
dence.

From Theorem 2.2.8, we know that this zeta function is of the form

�F 0.s/D
LF 0.q�s/

.1�q�s/.1�q1�s/

for some polynomialLF 0.T /2 ZŒT � of degree2gF 0 that has no zero atT D 1 orT D q�1.
This means that the sum over the orders of all pairs of zeros ofL. � ;1=2/ sums up togF 0 ,
and that we findgF 0 linearly independent toroidal automorphic forms inEK . Note that
for a quasi-character�D !i j j

s with �2 D j j˙1, we have that�F 0.sC1=2/¤ 0 because
L.T / has no zero atT D q0 or T D q�1. Hence if� is a zero ofL. � ;1=2/, then QE. � ;�/
is not a residuum.

Finally, we apply Hurwitz’ theorem ([28, Cor. 2.4]) to the unramified extensionF 0=F

and obtain:

2gF 0 � 2 D hF .2gF � 2/ and thus gF 0 D .gF � 1/hF C 1 : �

6.2.15 Conjecture.The dimension ofEKtor equals.gF �1/hF C1.

6.2.16 Remark. The question whether the dimension ofEKtor can be larger than the lower
bound.gF �1/hF C1 depends on the question whether there is a character�0 on the divi-
sor class groupF � nA� =O�

A such that for all maximal toriT theL-functionsL.�0�T ; s/
have a common zeros.

Theorems 1.1 and 5.2 in [67] state that for every global function fieldF of character-
istic different from2, there is integern0 such that for everyn� n0 the occurrence of such
a common zero is excluded for the constant field extensionFn D FqnF . This means that
for every quasicharacter�0 W A�

F n ! C� that is trivial onFn and for everys 2 C, there is
a separable quadratic field extensionEn=Fn such thatL.�0�T ; s/¤ 0. (Note that in our
particular case all exceptional situations of [67, para. 5.1] can be easily excluded since�0
is not symplectically self-dual and #oD 1.)

If the genus ofF is 1 and either its characteristic is different from2 or hF is differ-
ent fromqC 1, then in Theorem 8.3.11 we will show by a different method that such a
common zero cannot occur.

One way to prove this result for all global function fields of arbitrary characteristic,
genus and class number is by proving a non-vanishing result for double Dirichlet series as
considered in [18] and [19].
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6.3 Toroidal residues of Eisenstein series

In this section, we will prove that residues of Eisenstein series are not toroidal (Theorem
6.3.8).

6.3.1 Let T � G be a maximal torus corresponding to the quadratic algebra extension
E=F . Let�T be the character onA� that we defined in paragraph 6.2.10. Theorems 6.2.3
and 6.2.8 defined for every Schwartz-Bruhat function' W A2! C, g 2 GA and� 2 „ a
holomorphic functioneT .g;';�;s/ of s 2 C such thatET .g;';�;s/ equalseT .g;';�;s/
times a certainL-function provided the Eisenstein series has no pole ats.

Our aim is to the investigate toroidal integrals of the residuesR.g;';�/ ofE.g;';�;s/
at s D 0, where�2 D j j˙1. Note that

RT .g;';�/ D
�
RessD0E.g;';�;s/

�
T
D RessD0ET .g;';�;s/

since we integrate functions with compact support inTFZA nTA .

6.3.2 Lemma. Let T be an anisotropic torus and� D ! j j˙1=2 2 „ with !2 D 1. For
every Schwartz-Bruhat function' W A2! C andg 2GA ,

RT .g;';�/ D eT .g;';�;0/ RessD0 LE .�ıNE=F ; sC1=2/ :

Proof. With help of Theorem 6.2.3, we calculate

RT .g;';�/D lim
s!0

s ET .g;';�;s/

D lim
s!0

s eT .g;';�;s/ LE .�ıNE=F ; sC1=2/

D eT .g;';�;0/ RessD0 LE .�ıNE=F ; sC1=2/ : �

6.3.3 Let T �G be a maximal torus and�D ! j j˙1=2 2„ with !2 D 1. Let' W A2!C
a Schwartz-Bruhat function. By Theorem 2.4.2,R. � ;';�/ is a multiple of! ı det. In
particular,R.g;';�/D 0 for anyg 2GA if and only ifR.e;';�/D 0.

6.3.4 Lemma. LetT be an anisotropic torus and�D ! j j˙1=2 2„ with !2 D 1. There
is a Schwartz-Bruhat function' such thatRT .e;';�/¤ 0 if and only if! D 1 or ! D �T .

Proof. Observe that the residuum of

LE .�ıNE=F ; sC1=2/ D LF .!;sC1=2˙1=2/ LF .!�T ; sC1=2˙1=2/

ats D 0 is nontrivial if and only if one of the two factors is the zeta function ofF , and this
happens if! D 1 or! D ��1

T D �T .
If RessD0LE .� ıNE=F ; sC 1=2/ D 0, thenRT .e;';�/ D 0 for all Schwartz-Bruhat

functions' by Lemma 6.3.2.
If not, thenR.e;'T ;�/D 1 � RessD0LE .�ıNE=F ; sC1=2/ (Theorem 6.2.3 (ii)) does

not vanish. �

6.3.5 Lemma. Let T be an anisotropic torus and� D ! j j˙1=2 2 „ with !2 D 1. If
RT .e;';�/D 0 for all Schwartz-Bruhat functions', then there exists a Schwartz-Bruhat
function' such thatR.1/T .e;';�/ ¤ 0.
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Proof. By Lemma 6.3.4, we have thatRT .g;';�/D 0 for all ' andg 2GA if and only if
LE .! ıNE=F ; � / has no pole at0 or 1. With the help of Theorem 6.2.3, we calculate

R
.1/
T .e;'T ;�/D lim

s!0

d

ds
s ET .e;'T ;�;s/

D lim
s!0

d

ds
s eT .e;'T ;�;s/LE .�ıNE=F ; sC1=2/

D lim
s!0

�
eT .e;'T ;�;s/LE .�ıNE=F ; sC1=2/

C s
d

ds
eT .e;'T ;�;s/LE .�ıNE=F ; sC1=2/

�
D eT .e;'T ;�;0/LE .! ıNE=F ;1=2˙1=2/ ;

which does not vanish by Theorem 6.2.3 (ii) and Corollary 2.2.12.�

6.3.6 Let T be a split torus and�D ! j j˙1=2 2„ with !2 D 1. LetN be the unipotent
radical of a Borel subgroupB �G. Then

.! ıdet/N .g/ D
Z

NF nNA

! ıdet.ng/dn D ! ıdet.g/ :

Consequently
RT .e;';�/ D 0

for every Schwartz-Bruhat function' by the definition of the toroidal integral for a split
torus.

We summarise:

6.3.7 Theorem.LetE be a quadratic separable algebra extension ofF , �E the character
from paragraph 6.2.10 and�D ! j j˙1=2 2„ with!2 D 1.

(i) If ! is trivial, thenR. � ;�/ 2Ator.E/ if and only ifE ' F ˚F .

(ii) If ! is nontrivial, thenR. � ;�/ 2Ator.E/ if and only if! ¤ �E .

(iii) If E is a field andn� 1, thenR.n/. � ;�/ …Ator.E/. �

6.3.8 Theorem.RtorD f0g. �

6.4 Remarks on toroidal cusp forms

6.4.1 Remark. Waldspurger calculated toroidal integrals of cusp forms over number fields.
So assume for a moment thatF is a number field,� an irreducible unramified cuspidal
representation andf 2 � an unramified cusp form. LetL.�;s/ be theL-function of� .
Let T � G be an torus corresponding to a quadratic field extensionE of F and�T the
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character corresponding toT by class field theory. Then the square of the absolute value
of Z

TFZA nTA

f .t/dt

equals a harmless factor timesL.�;1=2/L.��T ;1=2/, cf. [71, Prop. 7].
These integrals are nowadays called Waldspurger periods off , and it is translated in

some cases to global function fields, cf. [44]. This leads to the conjecture:

6.4.2 Conjecture. A cusp formf of an irreducible unramified cuspidal subrepresentation
� of the space of automorphic forms is toroidal if and only ifL.�;1=2/D 0.

By the multiplicity one theorem (3.5.3), this conjecture implies

6.4.3 Conjecture. The dimension ofAK
0;tor equals the number of isomorphism classes of

irreducible unramified cuspidal representations� withL.�;1=2/D 0.

6.4.4 Remark. In Theorem 8.3.1, we will prove by a different method thatAK
0;torD f0g if

gF D 1.

6.5 Some history around the Riemann hypothesis

Ich setzte nuns D 1
2 C t i und

…
� s
2

�
.s�1/�� s

2 �.s/ D �.t/ ; Œ: : : �

Die Anzahl der Wurzeln von�.t/D 0, deren reeller Theil zwischen0 undT liegt, ist
etwa

D
T

2�
log

T

2�
�
T

2�
I

denn das Integral
R
d log�.t/ positiv um den Inbegriff der Werthe vont erstreckt, deren

imaginärer Theil zwischen12 i und�12 i und deren reeller Theil zwischen0 undT liegt,

ist (bis auf einen Bruchtheil von der Ordnung der Grösse1
T

) gleich
�
T log T

2� �T
�
i;

dieses Integral aber ist gleich der Anzahl der in diesem Gebiet liegenden Wurzeln von
�.t/D 0, multiplicirt mit 2� i. Man findet nun in der That etwa so viel reelle Wurzeln
innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell sind.
Hiervon wäre allerdings ein strenger Beweis zu wünschen;Œ: : : �

Bernard Riemann, [54]

Though the function

�.s/ D

1X
nD1

1

ns
for Res > 1

was studied by Leonard Euler for real values ofs long before the cited article by Bernard
Riemann from 1859 ([54]) was written, it was this article that gave�.s/ the name ‘Rie-
mann zeta function’ and that gave the conjecture that the zeros of�.s/ are real the name
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‘Riemann hypothesis’. This hypothesis is equivalent with the more common formulation
that the nontrivial zeros of�.s/, i.e. the zeros of�.s/ that are not negative even integers,
have real part1=2. The proof that Riemann asks for is still an open problem today.

In his article, Riemann was concerned with the approximation of the number of primes
�.x/ up to a givenx 2 R by the logarithmic integral function

Li.x/ D

1Z
0

1

ln t
dt ;

a connection that was first observed by Gauß. It states that—though the occurrence of a
prime number, which corresponds to a jump in�.x/, seems unpredictable—the value of
�.x/ is of a comparable size to Li.x/. Riemann writes in the same article [54]:

Die bekannte NäherungsformelF.x/D Li.x/ ist also nur bis auf Grössen von der Ord-

nungx
1
2 richtig [...].

The precise relation between this approximation and the Riemann hypothesis was
given by Helge von Koch in 1901 ([68]), namely, that the Riemann hypothesis is equivalent
to the statement that

lim
x!1

�.x/�Li.x/

x1=2C�

is bounded for every� > 0. (See Don Zagier’s inaugural lecture in Bonn [82] for a more
comprehensive overview over these connections).

In his doctoral thesis from 1924 ([2], [3]), Emil Artin defined a zeta function for the
function field of an elliptic or a hyperelliptic curve over a finite field. He calculated the
zeta functions for about 40 function fields and found out that in these cases the analogue
of the Riemann hypothesis holds true, i.e. that all zeros have real part1=2.

Whereas Artin’s zeta function was the strict analogue of the Riemann zeta function,
Friedrich Karl Schmidt introduced in 1929 ([57]) a more intrinsic definition of a zeta
function that included an additional factor for the place at infinity, which was singled out
in Artin’s definition. Since this factor is invertible, it does not change the validity of the
Riemann hypothesis. Schmidt further extended the definition to all global function fields
F , and it is this kind of zeta function that we denote by�F in the present thesis.

Helmut Hasse proved in 1933 ([29]) that for the function field of an elliptic curve over
a finite field, the Riemann hypothesis holds true, and André Weil proved in 1948 ([76])
the Riemann hypothesis for the function fields of an arbitrary curve over a finite field by
methods from algebraic geometry, which he developed for this purpose over a period of
several years. We refer to this result as the Hasse-Weil theorem, cf. Theorem 6.7.1.

Weil defined in 1949 ([77]) a zeta function for more general varieties over finite fields
and stated his famous conjectures, which included the Riemann hypothesis for this class
of zeta functions. Many mathematicians like Dwork and Grothendieck worked on these
conjectures and could solve parts of them, but it was not before 1973 that Pierre Deligne
succeeded in proving the Riemann hypothesis for projective nonsingular varieties over
finite fields ([16]). However, it is still unclear if the known methods generalise from global
function fields to number fields.
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Meanwhile, there are alternative proofs of the Hasse-Weil theorem that use less al-
gebraic geometry, e.g. the proof by Yuri Manin in special cases in 1956 ([45]), by Ser-
guei Stepanov in 1969 ([63]) and by Wolfgang Schmidt in 1973 ([58]). Finally, Enrico
Bombieri simplified this proof in 1974 ([7]). But it also failed to be translated toQ yet.

There are further approaches by formulating conditions that imply the Riemann hy-
pothesis forQ. To name a few, there is Weil’s criterion from 1952 ([78]) or Li’s criterion
from 1997 ([42]). In 1999, Alain Connes ([13]) showed that a certain trace formula is
equivalent to the Riemann hypothesis.

At the Bombay Colloquium in January 1979, Don Zagier ([83]) observed that if the
kernel of certain operators on automorphic forms turns out to give a unitarizable represen-
tation, formulas of Hecke imply the Riemann hypothesis. Zagier called elements of this
kernel toroidal automorphic forms.

In the following section, we elaborate the analogue of Zagier’s idea for global function
fields, namely, the implications of unitarizability of the space of toroidal automorphic
forms for the Hasse-Weil theorem. In the last section, we show the impact of the Hasse-
Weil theorem on the unitarizability of the space of toroidal automorphic forms.

6.6 From unitarizability to the Riemann hypothesis

This section translates the observation of Don Zagier ([83, pp. 295–296]) that unitariz-
ability of the space of toroidal automorphic forms implies the Riemann hypothesis to the
setting of global function fields. Recall the definition of the restricted tensor product of
representations and of the principal series representationsPx.�x/ from paragraph 3.1.5.

6.6.1 Definition. An irreducible subrepresentationV �Anr
adm is calledunitarizableif for

all x 2 jX j, there is an unramified quasi-character�x W Fx! C� such that

V '
O
x2jX j

0
Px.�x/

asGA-representation and for allx 2 jX j, the quasi-character�x either is a character or
equalsj jsxx for sx 2 .�1=2;1=2/ or .sx �� i= lnq/ 2 .�1=2;1=2/.

A unitarizable representation is called atempered representationif for all x 2 jX j, the
quasi-character�x is a character. Otherwise it is called acomplementary series represen-
tation.

An unramified representation is called a unitarizable/tempered/complementary series
representation if it decomposes into a direct sum of irreducible unitarizable / tempered /
complementary series representations.

6.6.2 Remark. Let V �Anr
adm be an irreducible subspace. ThenV is unitarizable if and

only if there is aGA-invariant Hermitian product onV . Bearing in mind that the defini-
tion of unitarizability is of local nature, i.e. it refers to properties of certain representa-
tions Px.�x/ of Gx for everyx 2 jX j, and that every irreducible representations ofGx
is isomorphic to some principal series if not1-dimensional (Theorem 3.1.8), the assertion
follows from [11, Thm. 4.6.7]. The consequence that the Hilbert space completion of a
unitarizable invariantV �Anr

adm is a unitary representation ofGA explains the naming.
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6.6.3 Lemma. Let� 2„0, then the following are equivalent.

(i) P .�/ is a tempered representation.

(ii) Re�D 0.

(iii) �x.�/ 2 Œ�2q
1=2
x ;2q

1=2
x � for all x 2 jX j.

(iv) �x.�/ 2 Œ�2q
1=2
x ;2q

1=2
x � for somex 2 jX j.

Proof. Recall from paragraph 3.1.5 that

P .�/ '
O
x2jX j

0
P .�x/

with �x D �jFx
, which all are characters if and only if� is a character. This is the case if

im�� S1, or equivalently if Re�D 0. Thus the equivalence of (i) and (ii).
Assume (ii). Then im�� S1, and�x.�/D q

1=2
x

�
��1.�x/C�.�x/

�
for everyx 2 jX j.

But ��1.�x/ is the complex conjugate of�.�x/, therefore��1.�x/C�.�x/ 2 Œ�2;2�.
Thus (iii). The implication from (iii) to (iv) is trivial.

Conversely,��1.�x/C�.�x/ 2 Œ�2;2� only if ��1.�x/ is the complex conjugate of
�.�x/, thus�.�x/ 2 S1. But by Lemma 3.7.2, ev�1x .�.�x// contains only multiples of
� by characters, and since this fibre contains a character of the formj j

s for some purely
imaginarys, � itself must be a character. Thus (iv) implies (ii).�

6.6.4 Lemma. Let� 2„0, then the following are equivalent.

(i) P .�/ is unitarizable.

(ii) Re� D 0 or � D ! j js for some! 2 „0 with !2 D 1 and somes 2 C such that
s 2 .�1=2; 1=2/ or .s�� i= lnq/ 2 .�1=2; 1=2/.

(iii) �x.�/ 2 .�.qxC1/; qxC1/ for all x 2 jX j.

(iv) There exists a subsetS � jX j that generatesClF such that for allx 2 S ,
�x.�/ 2 .�.qxC1/; qxC1/.

Proof. Assume (i) and choose a placex. Note that asF �
x =O�

x ' Z, �x is of the formj jsx

for somesx 2C, and thus�x.�/D q
1=2
x .q

sx
x Cq

�sx
x /. If the restriction�x of � toF �

x is a

character, then�x.�/D q
1=2
x

�
��1
x .�x/C�x.�x/

�
2 Œ�2q

1=2
x ; 2q

1=2
x �. If not, observe that

sx 2 .�1=2; 1=2/ if and only if .q
sx
x Cq

�sx
x / 2 Œ2; q

1=2
x Cq

�1=2
x / and

.sx �� i= lnq/ 2 .�1=2; 1=2/ if and only if .q
sx
x Cq

�sx
x / 2 .�q

1=2
x �q

�1=2
x ; �2� :

This proves (iii) from (i). The implication (iii) to (iv) is clear.
Assume (iv). If for onex 2 jX j, we have�x.�/ 2 Œ�2q

1=2
x ; 2q

1=2
x �, then Lemma 6.6.3

implies that Re�D 0. If not, thensx 2 .�1=2; 1=2/ or .sx�� i= lnq/ 2 .�1=2; 1=2/. By
Lemma 3.7.2, all quasi-characters�0 with �0.�x/D �.�x/ are of the form�0 D !� with a
character! that satisfies!.�x/D 1. In particular,j jsx is of this form, and to have for all
x 2 jX j that!.�x/ j�xj 2 .�.qxC 1/; �2q

1=2
x /[ .2q

1=2
x ; qxC 1/, it must hold true that

!.�x/D˙1, and thus!2 D 1. Hence (ii).
Statement (i) follows from (ii) by the definition of a unitarizable representation.�
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6.6.5 Theorem (Zagier). If every irreducible subrepresentation ofAnr
tor is a tempered rep-

resentation, then all zeros of�F have real part1=2. If furthermore,Anr
tor is itself a tempered

representation, then�F has only simple zeros.

Proof. By Theorem 6.2.11, we know that every zero1=2C s of ordern of �F yields
that QE. � ; j js/; : : : ; QE.n�1/. � ; j js/ are toroidal. Only QE. � ; j js/ generates an irreducible
representation. If this representation is tempered, then the real part ofs is 0 by Lemma
6.6.3.

If furthermoreAnr
tor is the direct sum of irreducible tempered subrepresentations, then

no derivative of an Eisenstein series can occur and the zeros of�F must be of order1. �

By Lemma 6.6.3, we obtain:

6.6.6 Corollary. If there is a placex such that the eigenvalue of everŷx-eigenfunction
in AK

tor lies in the intervalŒ�2q1=2x ;2q
1=2
x �, then all zeros of�F have real part1=2. �

6.6.7 Remark. We will see in Chapter 8 that the developed methods are strong enough to
prove that the space of unramified toroidal automorphic forms for global function fields of
genus1 contains only unitarizable subquotients, without using the Hasse-Weil theorem or
the Ramanujan-Petersson conjecture.

A proof of unitarizability for the unramified toroidal automorphic forms overQ would
imply that the zeros of the Riemann zeta function� either lie in the interval.0;1/ or have
real part1=2. Since we know that� has no zero in.0;1/, cf. [66, Formula (2.12.4)], the
Riemann hypothesis forQ indeed follows from unitarizability ([83, pp. 295–296]).

This result, however, is peculiar toQ: The zeta function�F of the function fieldF of
the elliptic curve overF4 that is defined by the Weierstrass equationY 2CY D X3C˛,
where˛ is an element inF4�F2, has a zero of order2 at1=2.

Note that unitarizability implies in particular that no derivatives of Eisenstein series
occur, so this further implies the simplicity of the zeros of�F . It seems indeed likely that
the Riemann zeta function� has simple zeros. For an overview over the research related
to this question, see [50, §2]. The above example shows that simplicity of the zeros is also
not a general phenomenon.

The milder assumption of that every irreducible subquotient of the space of unramified
toroidal automorphic forms is unitarizable still implies the Riemann hypothesis forQ, but
it allows multiple zeros of�.

6.7 From the Riemann hypothesis to unitarizability

The implication of Theorem 6.6.5 is of hypothetical nature as the Riemann hypothesis is
proven for global function fields (Theorem 6.7.1). We can, however, make use of the Rie-
mann hypothesis to prove the hypothesis of Theorem 6.6.5. This proof uses admissibility
(Theorem 6.1.9) and the Ramanujan-Petersson conjecture (Theorem 6.7.3).

6.7.1 Theorem (Hasse-Weil, [76]).If �F .s/D 0, thenRes D 1=2.
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6.7.2 Corollary. Let� 2„. If LF .�;s/D 0, thenRes D 1=2�Re�.

Proof. This follows immediately from the theorem and Proposition 2.2.11.�

The Ramanujan-Petersson conjecture holds true for GL2 over global function fields.

6.7.3 Theorem (Drinfeld, [17]). Every irreducible subrepresentationV of A0 is a tem-
pered representation.

6.7.4 Recall from paragraph 2.3.16 thatE. � ;�/ generates a subrepresentation ofA that
is isomorphic toP .�/. Furthermore, ifV � A is generated byE. � ;�/; : : : ;E.n/. � ;�/
asGA-module, andV 0 �A by E. � ;�/; : : : ;E.n�1/. � ;�/, then by Proposition 3.3.3 also
the quotient representationV =V 0 is isomorphic toP .�/. Thus the isomorphism types of
all irreducible subquotients ofEnr

tor are determined by the irreducible subrepresentations of
Enr

tor.
This has the following implication. LetV � eEnr be an invariant subspace and let

S � jX j be a subset that generates ClF . If for every HK-eigenfunctionf 2 V with
eigencharacter�f andx 2 S , the eigenvalue�f .ˆx/ 2 .�.qxC 1/; qxC 1/, then every
irreducible subquotient ofV is unitarizable. If for everyHK-eigenfunctionf 2 V with
eigencharacter�f , there is a placex 2 jX j such that�f .ˆx/2 Œ�2q

1=2
x ;2q

1=2
x �, then every

irreducible subquotient ofV is a tempered representation.

6.7.5 Theorem.The irreducible unramified subquotients of the representation space of
toroidal automorphic forms are tempered representations.

Proof. Every subrepresentation ofAnr
tor is generated by elements inAK

tor, and by Theo-
rem 6.1.8, we know thatAK

tor is finite-dimensional. It is thus contained inAK
adm, which

decomposes by Theorem 3.6.3 into the three partsEK , RK andAK
0 .

ConcerningEK , we know from Corollary 6.2.4 that only for the� 2 C such that
�E .� ıNE=F ;1=2/ D 0 for any quadratic field extensionE of F , the Eisenstein series
E. � ;�/ can be toroidal, which generates a subrepresentation ofAnr

tor that is isomorphic
to P .�/. By Corollary 6.7.2, Re� D 0, and by Lemma 6.6.3,P .�/ is thus a tempered
representation. By paragraph 6.7.4, there will not occur any other isomorphism types for
further irreducible subquotients ofEnr than those generated by Eisenstein series, thus we
showed that all irreducible subquotients ofEnr

tor are tempered representations.
By Theorem 6.3.8,Rnr

tor D 0, and Theorems 3.5.2 and 6.7.3 yield thatAnr
0;tor decom-

poses into a direct sum of tempered representations.�



CHAPTER 7

Graphs for genus1

This chapter determines the graphs of Hecke operators of degree1 if the curve
is of genus1. Atiyah’s classification of vector bundles over an elliptic curve
over an algebraic closed field ([5]) can be used to investigate the vertices. The
calculation of the edges makes use of both Atiyah’s work and methods from
Chapter 5.

7.1 Vertices

In this section, we determine all isomorphism classes of projective line bundles for a
curveX over Fq of genus1. Propositions 5.2.3 and 5.2.4 already give a characterisa-
tion of PBundec

2 X andPBuntr
2X , respectively, in terms of the class groups ofX , and of

its quadratic extensionX 0 D X ˝Fq2 . We are left with understanding the structure of

PBungi
2 X .

7.1.1 Let X be a curve of genus1 over Fq with function fieldF , ClX the divisor class
group andhX the class number. The canonical sheaf!X is isomorphic to the structure
sheafOX ([28, Ch. IV, Ex. 1.3.6]). The mapX.Fq/! Cl1X obtained by considering an
Fq-rational point as a prime divisor, is a bijection ([28, Ch. IV, Ex. 1.3.7]). We identify
these sets. The choice of anx0 2X.Fq/ defines the bijection

X.Fq/ �! Cl0X :

x 7�! Œx�� Œx0�

SoX.Fq/ inherits a group structure andX becomes an elliptic curve. For this reason, a
global function field of genus1 is also called an elliptic function field.

7.1.2 The Riemann-Roch theorem reduces to dimFq
�.L/�dimFq

�.L�1/DdegL. Since
�.L/ is non-zero if and only ifL is associated to an effective divisor ([28, Prop. II.7.7(a)]),
we obtain:

dimFq
�.L/ D

�
0 if degL� 0 andL'= OX ;

1 if L'OX ; and

degL if degL> 0:

115
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By Serre duality, Ext1.OX ;OX /'Hom.OX ;OX /' �.OX / is one-dimensional. Thus
PExt1.OX ;OX / contains only one element. This determines a rank2 bundleM0 by para-
graph 5.3.3. Sinceı.OX ;M0/ D 0, Lemma 5.3.6 implies thatı.M0/ D 0, and since
M0 '= OX ˚OX , the vector bundleM0 is indecomposable. Proposition 5.3.8, in turn,
implies thatŒM0� … PBuntr

2X , henceŒM0� 2 PBungi
2 X . We call this classs0.

Recall thatLx denotes the line bundle associated to the divisor classŒx� 2 ClX . For
a placex of degree1, the Fq-vectorspace Ext1.OX ;Lx/ ' Hom.OX ;Lx/ ' �.Lx/ is
also one-dimensional, and defines a rank2 bundleMx (cf. paragraph 5.3.3). In this case,
ı.OX ;Mx/D degOX �degLx D �1, because ifMx would have a subbundleL!Mx

of degree1, Lemma 5.3.6 would imply thatMx decomposes intoOX ˚L. Such a de-
composition cannot exist, sinceMx was chosen to be a nontrivial extension ofLx by OX .
Becauseı.Mx/� ı.OX ;Mx/ .mod 2/, we obtain thatı.Mx/D �1, and by Proposition
5.3.8, thatŒMx � 2 PBungi

2 X . We denote this class bysx .

7.1.3 Remark. Note that the notation for the vector bundleMx of the previous paragraph
is the same as the notation for the stalk of some vector bundleM atx. To avoid confusion,
we will reserve the notationMx strictly for the vector bundle defined in the last paragraph
throughout the whole chapter.

SinceX.Fq/ D Cl1X , the graph of̂ x depends only on the divisor class ofx. The
verticescD andtD0 , whereŒD� 2 ClX andŒD0� 2 ClX 0 depend also only on the divisor
classes ofD andD0 (Propositions 5.2.3 and 5.2.4), respectively. This justifies that there
will arise no ambiguity if we allow ourselves to substituteŒD� 2 ClX by D 2 ClX and
ŒD0� 2 ClX 0 byD0 2 ClX 0 for better readability.

7.1.4 Proposition.

PBungi
2 X D

˚
sx
ˇ̌
x 2 Cl1X

	
q
˚
s0
	
;

and sx D sy if and only if .x�y/ 2 2Cl0X .

Proof. Let Bd
n .Y / be the set of isomorphism classes of geometrically indecomposable

rank n bundles overY that have degreed . The symbolY denotes one ofX , X 0, or
X D X˝Fq with Fq being the algebraic closure ofFq . Observe that we have inclusions
Bd
n .X/�Bd

n .X
0/�Bd

n .X/, cf. 5.2.1. For a rank1 bundleL overY , the map

Bd
n .Y / �! BdCrn

n .Y /

M 7�! M˝Lr

defines a bijection of sets for everyd;r 2 Z andn � 1. We have to determine the orbits
under Pic0X of B0

2 .X/ andB1
2 .X/ to verify the proposition. We already know thatM0 2

B0
2 .X/ andMx 2B1

2 .X/ for all x 2 Cl1X .
For the cased D 0, we use the following result of Atiyah.

7.1.5 Theorem ([5, Thm. 5 (ii)]). For all M;M0 2 B0
n.X/, there exists a uniqueL 2

Pic0X such thatM 'M0˝L.

This implies that for everyM 2 B0
2 .X/, there exists a uniqueL 2 Pic0X such that

M 'M0˝L. But the action of Pic0X and Gal.Fq =Fq/ on vector bundles overX com-
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mute, and thus for every� 2Gal.Fq =Fq/,

M0˝L�
' .M0˝L/� ' M�

' M ' M0˝L :

By uniqueness,L� 'L, and thusL 2 Pic0X . HenceŒM�D s0 2 PBungi
2 X .

For d D 1, we restate Atiyah’s classification of indecomposable vector bundles over
X .

7.1.6 Theorem ([5, Thm. 7]).There are bijections'dn WB
d
n .X/! Pic0.X/ such that the

diagrams

Bd
n .X/

'd
n //

det
��

Pic0.X/

.n;d/

��
Bd
1 .X/

'd
1 // Pic0.X/

commute for alld 2 Z andn � 1. Here, .n;d/ denotes multiplication with the greatest
common divisor ofn andd .

This means that detWB1
2 .X/!B1

1 .X/ is a bijection, and consequently the restriction
detWB1

2 .X/!B1
1 .X/ is still injective. Because every element ofB1

1 .X/ is of the form
Lx for some placex of degree1 and because det.Mx/ ' Lx 2 B1

1 .X/, we obtain that
B1
2 .X/D fMxjx 2 Cl1Xg.

By the injectivity of the determinant map,Mx 'My˝L for someL 2 Pic0X if and
only if detMx ' det.My˝L/' .detMy/˝L2, or, equivalently,.x�y/ 2 2Cl0X . This
proves Proposition 7.1.4. �

7.1.7 Remark. This proposition shows that projective line bundles that are geometrically
indecomposable behave differently from those that decompose after extension of con-
stants, cf. Lemma 5.2.5. Ifx�y … 2Cl0X , thensx andsy are not isomorphic. However
there is a finite constant extension ofY !X such thatx�y 2 2Cl0Y , since geometrically
the class group of an elliptic curve is divisible. Thussx andsy become isomorphic over
Y . For a concrete example, considerX DX6, andY DX 0

6 as in paragraph 7.3.3.

7.1.8 Corollary. If a rank 2 bundleM hası.M/D �1 anddetM 'Lx , thenM repre-
sentssx .

Proof. A rank2 bundleM with ı.M/D�1 must be geometrically indecomposable. The
corollary follows from the fact that every element ofB1

2 .X/ is characterised by its deter-
minant. �

7.1.9 Corollary. Let x 2 X.Fq/. Then the nucleusNx of the graphGx consists of the
vertices

Vert Nx D f tD gD2ClX 0 q fsx gx2Cl1X q fs0 g q fcD gD2Cl0X[Cl1X :

Proof. By definition, the nucleus contains all verticesv 2 Vert Gx with ı.v/ � 1. In par-
ticular, Nx containsPBuntr

2X , which is described in Proposition 5.2.4,PBungi
2 X , which

is described in Proposition 7.1.4, and the verticesv 2 PBundec
2 X with ı.v/� 1, which are

as in the corollary by Proposition 5.2.3.�
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7.2 Edges

Let x be a place of degree1 and letˆx be defined as in 1.4.2. Theorem 5.4.9 and Propo-
sition 7.1.4 determine the graphGx of ˆx up to the edges of the nucleusNx as illustrated
in Figure 7.1.

For an elliptic curve, the divisor classes of degree0 can be represented by the difference
of two divisors of degree1, or more preciselyz�x runs through Cl0X asz varies through
all degree1 places whilex is fixed. We characterise all the missing edges ofGx .

7.2.1 Theorem.Letx be a prime divisor of degree1 andh2 D #Cl0XŒ2� the cardinality
of the2-torsion of the class group. Then the edges with origin inNx are given by the
following list.

Ux.c0/D f.c0; cx ;qC1/g ;

Ux.cx/D f.cx ; c2x ;1/; .cx ; c0;1/; .cx ; s0;q�1/g ;

Ux.cy/D f.cy ; cyCx ;1/; .cy ; cy�x ;q/g if y ¤ x;

Ux.cy�x/D f.cy�x ; cy ;2/; .cy�x ; sy ;q�1/g if y ¤ x; buty�x 2 .ClX/Œ2�;

Ux.cy�x/D f.cy�x ; cy ;1/; .cy�x ; c2x�y ;1/; .cy�x ; sy ;q�1/g if y�x … .ClX/Œ2�;

Ux.s0/D f.s0; cx ;1/; .s0; sx ;q/g ;

Ux.tD/D f.tD; sxCDC�D;qC1/g for D 2 Cl0X 0
�Cl0X; and

Ux.sy/D f.sy ; s0;h2/ j if y � x .mod 2Cl0X/g

[

n
.sy ; cz�x ;

1
2
h2/

ˇ̌̌
if .z�x/2.Cl0X/Œ2�;

z¤x; and.z�y/22Cl0X

o
[

n
.sy ; cz�x ;h2/

ˇ̌̌
if .z�x/….Cl0X/Œ2�;

and.z�y/22Cl0X

o
[

n
.sy ; tD;

1
2
h2/

ˇ̌̌
if D2.Cl0X 0�Cl0X/;2D2Cl0X;

andy�DC�DCx .mod2Cl0X/

o
[

n
.sy ; tD;h2/

ˇ̌̌
if D2.Cl0X 0�Cl0X/;2D…Cl0X;

andy�DC�DCx .mod2Cl0X/

o
for y 2 Cl1X:

Remark on illustrations: There are illustrations of these sets at the appropriate places in
the proof. We draw verticesv from left to right in order of increasing value ofı.v/. At the
end of this section and in section 7.3 one finds illustrations of entire graphs.

Proof. We recall some results that we will use in the proof without further reference. If
v andw areˆx-neighbours, thenı.w/ D ı.v/˙ 1 (Lemma 5.4.2). The weights of all
ˆx-neighbours of each vertex sum up toqC1 (Proposition 4.2.4). Thê x-neighboursv0

of a vertexv D ŒM� with ı.v0/D ı.v/C1 counted with multiplicity are in bijection with
the maximal subbundles ofM (Lemma 5.4.4). This bijection is given by taking a maximal
subbundleL!M (paragraph 5.4.3) to its associated sequence. Recall thatJx is the
kernel ofOX !Kx (paragraph 5.4.1) and thatLx denotes the line bundle associated to
the divisorx. We prove the theorem case by case.
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−2 −1

cusps

11 q

11 q

PBuntr
2 X

δ0 21

PBungi
2 X

nucleus

PBundec
2 X

Figure 7.1:Gx up to a finite number of edges

� Theorem 5.4.6 describesUx.c0/ completely:

c0 cx

q+1

� Let M D Lx˚OX representcx . We know from Theorem 5.4.6 thatc2x is the only
neighbourM0 with ı.M0/D 2. It has multiplicity1 and is given by the sequence associated
to Lx !M. By Lemma 5.4.13, the sequence associated toOX !M givesOX ˚OX as
neighbour. For all otherq � 1 neighboursM0, neitherLx !M nor OX !M lifts to
M0, but thenLxJx � Lx !M lifts to a subbundleOX ' LxJx !M0. We have that
detM0 ' .detM/Jx ' OX , but OX !M0 cannot have a complement, since otherwise
OX !M would lift. ThusM0 must represents0. This describesUx.cx/:

cx c2x

c0

s0
1

1
q−1

� Let M D Ly ˚OX representcy with y ¤ x. Again, we know thatcyCx is the only
neighbourM0 with ı.M0/ D 2, and it has multiplicity1. For all otherq neighbours,
LyJx!M0 is a subbundle, andM0 =LyJx ' OX . But sinceLyJx '= OX , we have that
Ext1.LyJx ;OX /D 0 (paragraph 7.1.2), and thusM0 decomposes. We obtain forUx.cy/:

cy+x

1

cy−x cy

q

� Let M DLy˚Lx representcy�x with y ¤ x. Then the sequences associated to the
two maximal subbundlesLy !M andLx !M determine two neighboursLy ˚OX
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andLyJx˚LX . They both decompose by Lemma 5.4.13 and representcy andc2x�y ,
respectively. For all otherq � 1 neighboursM0, no maximal line bundle lifts, and thus
ı.M0/D �1. Since detM0 'LyLxJx 'Ly , by Corollary 7.1.8,M0 representssy . We

havec2x�y D cy if and only if L2
xL�1

y ' Ly , or equivalently,
�
LxL�1

y

�2
' OX . This

means that these two neighbours are the same if and only ifx�y 2 .ClX/Œ2�. If this is
the case, we get forUx.cy�x/:

sy cy−x cy

q−1 2

� If x�y … .ClX/Œ2�, Ux.cy�x/ looks like:

sy cy−x

q−1

cy

c2x−y1
1

� Let M be the bundleM0 of paragraph 7.1.2, which representss0. Then it has a unique
maximal subbundleOX !M and an associated neighbourM0 with ı.M0/ D 1, which
decomposes. Because its maximal subbundle isOX!M0, detM0'Jx , and we recognise
it asOX ˚Jx . ThusM0 representscx . All q other neighboursM0 haveı.M0/ D �1 D

ı.M0˝Lx/, and det.M0˝Lx/' JxL2
x ' Lx . By Corollary 7.1.8,M0˝Lx and thus

alsoM0 representsx , andUx.s0/ is as follows:

1

sx s0 cx

q

� Let M representtD for aD 2 Cl0X 0�Cl0X . Sinceı.tD/D�2, every neighbourM0

of M must haveı.M0/ D �1. It is determined by its determinant, which we can calcu-
late by extending constants toX 0. We have detM0 ' Jx det.LD˚L�D/' JxLDL�D.
Because�xCDC �D � xCDC �D .mod 2ClX/, Corollary 7.1.8 implies thatM0

representssxCDC�D. We obtain forUx.tD/:

q+1

tD sx+D+σD

� The most subtle part is to determine the neighbours ofsy for y 2Cl1X . We chooseMy

as representative forsy , see paragraph 7.1.2, and recall that it was defined by a nontrivial
element in Ext1.OX ;Ly/. Thus det.My/ D Ly , and ı.My/ D �1. Look at an exact
sequence

0 // M0 // My
// Kx

// 0 :

Then det.M0/ ' .detMy/Jx ' Ly�x 2 Pic0X , and ı.M0/ 2 f�2;0g. By Proposition
4.4.3,sy must also be a neighbour ofŒM0�. But we have already determined the neighbours
of verticesv with these properties. We find that for.z � x/ 2 Cl0X � f0g, cz�x is a
neighbour ofsy if and only if y � z .mod 2Cl0X/, tD with D 2 Cl0X 0 �Cl0X is a
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neighbour ofsy if and only if y � xCDC�D .mod 2Cl0X/, ands0 is a neighbour of
sy if and only if y � x .mod 2Cl0X/, butc0 is never a neighbour ofsy . This shows that
the theorem lists precisely the neighbours ofsy . There is still some work to be done to
determine the weights. We begin with an observation.

7.2.2 Lemma. Up to isomorphism with fixedMy , there is at most one exact sequence
0!M0!My !Kx! 0 for a fixedM0.

Proof. Suppose there are two. We derive a contradiction as follows. Ifı.M0/ ¤ 0, then
M0 must be a trace of a line bundleL defined overX 0. By extending constants toFq2 ,
we may thus assume thatı.M0/D 0 and that there areL;L0 2 Pic0X such thatM0 is an
extension ofL0 by L. The compositionL!M0!M defines a maximal subbundle of
M becauseı.L;M/D �1. We get back the inclusionM0!M by taking the associated
sequence. Since we assume we have two different inclusions ofM0 into M, we get two
different subbundles of the formL!M, thus an inclusionL˚L!M. The cokernel
is a torsion sheaf of degree1 defined overFq2 , sayKx0 for a placex0 of Fq2F , and we
obtain an exact sequence

0 // L˚L // My
// Kx0 // 0 I

c0 D ŒL˚L� is thus anˆx0 -neighbour ofMy . This is a contradiction assy is not a
neighbour ofc0. �

We consider a second neighbourM00 of My that represents the same element asM0 in
PBunX , i.e.M00 'M0˝L0 for someL0 2 PicX . Since they have the same determinant,
L2
0 ' det.M0˝L0/.detM0/�1 ' .detM00/.detM0/�1 ' Ox , meaningL0 2 .PicX/Œ2�.

On the other hand, Theorem 7.1.6 tells us that forMy 2B1
2 .X/, My˝L0 'My if and

only if L0 2 .PicX/Œ2�. Thus.PicX/Œ2� acts on the sequences that we investigate. By
Lemma 7.2.2, we find that the multiplicity of a neighbourM0 of My equals the number of
isomorphism classes thatM0˝L0 meets asL0 varies through.PicX/Œ2�D .Pic0X/Œ2�.

We begin with the case of a neighbourM0 that is associated to a maximal subbundle
L!My . Then ı.L;M0/ D 0. If M0 =L ' L, the only possibility with these prop-
erties iss0. But thenL ! M0 is the only maximal subbundle, so allL˝L0 with
L0 2 .Pic0X/Œ2� have different associated sequences, and the multiplicity ofs0 is there-
foreh2 D #.Pic0X/Œ2�.

If L0 WDM0 =L '= L, thenM0 representscz�x for the divisor.z � x/ 2 Cl0X that
satisfiesLz�x ' L0L�1. SinceLy�x ' detM0 ' LL0, we havez � y .mod 2Cl0X/.
The rank2 bundleM0 has two different maximal subbundles, and it could happen that
M0 'M0˝L0 for someL0 2 .Pic0X/Œ2��fOXg. This only happens ifL0 ' LL0, so
L0L�1 2 .Pic0X/Œ2�, or equivalently,.z�x/ 2 .Cl0X/Œ2�. Thus the multiplicity ofcz�x

as a neighbour ofsy is h2=2 if .z�x/ 2 .Cl0X/Œ2��f0g andh2 if .z�x/ … .Cl0X/Œ2�.
The last case is that ofı.M0/D�2, whereM0 is the trace of a line bundleLD, where

D 2 Cl0X 0�Cl0X . If we lift the situation toX 0, thenM0 'LD˚L�D, and we see as
in the preceding case thatM0 'M0˝L0 for someL0 2 .Pic0X/Œ2��fOXg if and only
if D � �D 2 .Cl0X/Œ2�. This is equivalent to the two conditionsD � �D 2 Cl0X and
2D�2�D D 0, or 2D D .D��D/C .DC�D/ 2Cl0X and2D D �.2D/, respectively,
both saying that2D 2 Cl0X . This finally gives forD 2 Cl0X 0�Cl0X that tD has mul-
tiplicity h2=2 as neighbour ofsy if 2D 2 Cl0X andh2 if 2D … Cl0X . We illustrate this
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below. The dashed arrow only occurs ify � x 2 2Cl0X . The indicesz andD take all
possible values as in the theorem, and˛ 2 f1=2;1g depends on the particular edge.

sy

s0
h2

tD
cz−x

αh2

αh2

αh2

αh2

This completes the proof of the theorem.�

7.2.3 Remark. In Remark 5.1.13, we explained the connection between the graphs that
Serre considers in [60] and graphs of Hecke operators. In [64], Takahashi classified Serre’s
graphs for placesx of degree1 and genus1 by elementary matrix calculations. If the class
number is odd, then Serre’s graph coincides withGx without weights. If, however, the
class number is even, then these two notions of graphs produce different objects.

When we calculate the space of unramified toroidal automorphic forms, we also need
to evaluateGx for different placesx. Namely, we will use of the graphsGx for all hX
placesx of degree1. It is not visible from [64] how the vertices of the graphs for various
places of degree1 relate to each other, but Theorem 7.2.1 makes this clear.

7.2.4 (Odd class number)Let the class numberhD hX be odd andx a place of degree
1. ThenGx has only one component. We writefx;z2; : : : ; zhg D Cl1X where thezi ’s are
ordered such thatz2i �xD x�z2iC1 for i D 1; : : : ; .h�1/=2 andft1; : : : ; tr 0g DPBuntr

2X .
Then we can illustrate the graph of̂x as in Figure 7.2.

s1
1

1

s0

1 q 1

1 q 1

1 q 1

1 q 1

1 q 1

cx c2x

cz2

cz3 cz3+x

cz2+x

cz2−x

q

q−1

1

q+1
q−1

1

q−1

1

1

11 q

q

q

q
1 1

1

czh

czh−1−x

czh−1+x

czh+x

czh−1

q+1

q+1

tr′

t1

c0

Figure 7.2:Gx for a degree one placex of an elliptic curve with odd class number
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7.3 Examples

This section provides some examples of illustrations of graphs of Hecke operators.

7.3.1 Example. The easiest examples are given by elliptic curves with only one ratio-
nal point x and can be found in the literature, cf. [15], [60, 2.4.4 and Ex. 3 of 2.4]
or [64]. There are up to isomorphism three such elliptic curves:X2 over F2 defined
by the Weierstrass equationY 2C Y D X3CX C 1, X3 over F3 defined by the Weier-
strass equationY 2 D X3C 2X C 2 andX4 over F4 defined by the Weierstrass equation
Y 2CY DX3C˛ with F4 D F2.˛/. Since the class number is1, PBundec

2 Xq D fcnxgn�0

andPBungi
2 Xq D fs0; sxg for q 2 f2;3;4g. One calculates that Cl0.X2˝F4/ ' Z=5Z,

Cl0.X3˝F9/ ' Z=7Z and Cl0.X4˝F16/ ' Z=9Z, thusPBuntr
2Xq hasq different ele-

mentst1; : : : ; tq for q 2 f2;3;4g. We obtain Figure 7.3.

s1

s0

c0

c1 c2

t1

tq
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1

1

q+1

1
q

q−1
1 1 q 1

q+1
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Figure 7.3:Gx for the unique degree one placex of the elliptic curvesXq for q D 2;3;4

We give two examples for elliptic curves with even class number. Both examples
are elliptic curves overF3 with class number4, but with respective2-torsionZ=4Z and
.Z=2Z/2.

7.3.2 Example. The first example is the elliptic curveX5 overF3 defined by the Weier-
strass equationY 2 D X3CXC 2, which has class group Cl0X5 ' Z=4Z D fx;y;z;z0g,
wherex�y is the element of order2. The number of components ish2D 2, andPBungi

2 X

is given bys0, sx D sy and sz D sz0 . The class group ofX 0
5 D X5˝ F9 is Cl0X 0

5 '

.Z=4Z/2, thus Cl0X 0
5 = Cl0X5 ' Z=4Z. Let f0;D;D0;D00g be representatives such that

D is the divisor with2D 2 Cl0X5. ThenPBuntr
2X5 contains the two elementstD and

tD0 D tD00 . We do not need to calculate the norm map Cl0X 0
5 ! Cl0X5 as we can find

out to which oftD andtD0 the verticessx andsz are connected by the constraint that the
weights aroundsx andsz , respectively, sum up to4. The graph is illustrated in Figure 7.4.

7.3.3 Example. The second exampleX6 overF3 is defined by the Weierstrass equation
Y 2 D X3C2X , and has class group Cl0X6 ' .Z=2Z/2 D fx;y;z;wg. Hereh2 D 4, and
sx , sy , sz andsw are pairwise distinct vertices. ForX 0

6 D X6˝F9, Cl0X 0
6 ' .Z=4Z/

2,
thus Cl0X 0

6 = Cl0X6 ' .Z=2Z/2, which we represent byf0;D1;D2;D3g, each of theDi
being of order2. Again, by the constraint that weights around each vertex sum up to4,
we find thatPBuntr

2X6 contains three different traces of the line bundles corresponding to
D1,D2 andD3, which we denote byty , tz andtw , and which are connected tosy , sz and
sw , respectively. The graph is illustrated in Figure 7.5.
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Figure 7.4:Gx for a degree one placex of the elliptic curvesX5
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CHAPTER 8

Toroidal automorphic forms for genus1

The aim of this chapter is to investigate the space of unramified toroidal au-
tomorphic forms for a global function fieldF of genus1. The strategy is as
follows: If F 0 denotes the quadratic constant field extension ofF , then the
results from Chapter 6 provide precise conditions on the functions in the com-
pleted Eisenstein part to beF 0-toroidal. Theorem 6.1.2 yields a translation of
the toroidal condition forF 0 as a linear equation in the values of an unramified
F 0-toroidal automorphic form, which can be interpreted in terms of values at
vertices of the graph of an unramified Hecke operator. Together with eigen-
value equations for various Hecke operators, which are calculated using the
results from Chapter 7, this excludes the existence of nontrivial toroidal cusp
forms. This finally leads to the conclusion that at least one and at most two of
the unramifiedF 0-toroidal automorphic forms are toroidal. In the last section,
we discuss how close the developed methods get to a proof of the Riemann
hypothesis for function fields of genus1, i.e. the theorem of Hasse ([29, §4]).

8.1 Eigenvalue equations

In this section, we formulate eigenvalue equations forHK-eigenfunctions, which can be
extracted from the graphs that we determined in the previous chapter. First, we fix some
notation that will be used throughout this chapter.

8.1.1 Let F be an elliptic function field, i.e. the function field of a curveX of genus1.
Let Fq be the the field of constants, ClX the divisor class group andhX the class number.
Recall from paragraph 7.1.1 that the set ofFq-rational pointsX.Fq/ D fx1; : : : ;xhX

g of
X , considered as prime divisors, is in one-to-one correspondence with the set of divisor
classes Cl1X of degree1 onX . We identify these sets. Letp W X 0 D X ˝Fq2 ! X be
the covering by the constant extension of degree2 and letF 0 D Fq2F be the function field
of X 0. The mapp� W ClX ! ClX 0 is injective, so we may and will consider ClX as a
subgroup of ClX 0. Let � denote the nontrivial element of the Galois group ofF 0=F .

As in Chapter 7, we writeD 2 ClX , where we, strictly speaking, wantD to denote
a divisor and not a divisor class. But since no ambiguity arises as explained in Remark
7.1.3, we allow ourselves this misuse of notation in favour of better readability. IfD is a
divisor of degree0, then there is for any chosenx 2 Cl1X a uniquez 2 Cl1X such that
z�x represents the same divisor class asD. If we fix x and writez�x 2Cl0X , we make

125
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implicit use of this fact.
Let x be a place of degree1 and define the following numbers:

h D hX D #Cl0X D #fcDgD2Cl1X ; h0 D #.Cl0X 0=Cl0X/;

h2 D #Cl0XŒ2�D #fsygy2X.Fq/; h0
2 D #.Cl0X 0=Cl0X/Œ2�;

r D .hCh2/=2�1D #fcDgD2Cl0X�f0g
; r 0 D .h0Ch0

2/=2�1D #ftDgD2ClX 0�ClX :

The equality in the definition ofh2 follows from Proposition 7.1.4, the equality in def-
inition of h andr from Proposition 5.2.3 and the equality in definition ofr 0 from Proposi-
tion 5.2.4. Figure 8.1 shows certain subsets of VertGx . Each dashed subset of VertGx is
defined by the set written underneath. The integer written to the right is its cardinality. A
line between two dashed areas indicate that there is at least one edge inGx between two
vertices in the corresponding subsets.

{cD}D∈Cl0 X−{0}

r′
h2

r
h h

{tD}D∈ClX ′−ClX {cD}D∈Cl1 X {cD}D∈Cl2 X

{sy}y∈X(Fq)

{c0}

{s0} 1

1

Figure 8.1: Certain subsets of VertGx and their cardinalities

8.1.2 Lemma. h0 D 2.qC1/�h.

Proof. Fix a placex of degree1 and considerGx . We count the weights around theh2
verticessy , wherey varies through Cl1X modulo adding a class in2Cl0X . By Proposi-
tion 4.2.4, the weights around each of theh2 vertices add up toqC1. On the other hand,
Theorem 7.2.1 tells us precisely which vertices occur asˆx-neighbours of thesy ’s and
with which weight. We count all weights around thesy ’s:

� The vertexs0 occurs with weighth2.
� The vertexcz�x occurs with weighth2 if z�x 2 Cl0X �f0g andz�x ¤ x�z.
� The vertexcz�x occurs with weighth2=2 if z�x 2Cl0X �f0g andz�x D x�z.
� The vertextD occurs with weighth2 if D 2 ClX 0�ClX and2D … ClX .
� The vertextD occurs with weighth2=2 if D 2 ClX 0�ClX and2D 2 ClX .

Sincecz�x D cx�z , the sum of the weights of thecz�x ’s is .h2=2/.h�1/. SincetD D t�D
andtD depends only on the class ofD modulo ClX , the sum of the weights of thetD ’s is
.h2=2/.h

0�1/. Adding up all these contributions gives

h2.qC1/ D h2 C .h2=2/.h�1/C .h2=2/.h
0
�1/ ;
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which implies the relation of the lemma. �

8.1.3 Remark. This result can also be obtained from the equality�F 0.s/D �F .s/LF .�;s/,
where� D j j� i= lnq is the quasi-character corresponding toF 0 by class field theory. For
curves of genus1, these function can be written out explicitly as

q2T 4C .hh0�q2�1/T 2C1

.1�T 2/.1�q2T 2/
D

qT 2C .h�q�1/T C1

.1�T /.1�qT /
�
qT 2� .h�q�1/T C1

.1CT /.1CqT /
;

whereT D q�s. Comparing the coefficients of the numerators of these rational functions
in T yields an alternative proof of the lemma.

8.1.4 Remark. Over an algebraically closed field, the2-torsion of an elliptic curve is iso-
morphic toZ=2Z�Z=2Z if the characteristic is not2 and it is either trivial or isomorphic
to Z=2Z if the characteristic is2, depending on whether the curve is supersingular or not
([62, Cor. 6.4,Thm. 3.1]). Henceh2 andh0

2 can be1, 2 or 4, where the last case only occurs
if q is odd.

The previous lemma implies thath is odd if and only ifh0 is odd. Since an abelian
group has trivial2-torsion precisely when its order is odd, this implies thath2 D 1 if and
only if h0

2 D 1.
In characteristic2, we thus always have thath0

2 D h2. It is not clear to me whether it
can happen in odd characteristic that one of bothh2 andh0

2 is 2, while the other one is4.

8.1.5 Let f 2AK be anHK-eigenfunction with eigencharacter�f . For allx 2 jX j, put
�x D �f .ˆx/. The unramified automorphic formf can be seen as a function on the
vertices of the graph of an unramified Hecke operator, so we can evaluate the eigenvalue
equations

ˆx f D �x f

with help of Theorem 7.2.1 at each vertex for each placex of degree1.
For every placex of degree1 we obtain the following equations for the vertices in the

nucleus of̂ x . Note that the expressions in the right-most column are labels, which will
be used for the purpose of reference.

�xf .tD/D .qC1/f .sDC�DCx/ for D 2 ClX 0
�ClX; (x; tD)

�xf .s0/D qf .sx/Cf .cx/ ; (x;s0)

�xf .c0/D .qC1/f .cx/ ; (x;c0)

�xf .cz�x/D .q�1/f .sz/Cf .cz/Cf .c2x�z/ for z 2X.Fq/�fxg; (x;cz�x)

�xf .cx/D .q�1/f .s0/Cf .c0/Cf .c2x/ ; (x;cx)

�xf .cz/D qf .cz�x/Cf .czCx/ for z 2X.Fq/�fxg; (x;cz)

�xf .sy/D f̨ .s0/C .h2=2/
X

.z�x/2Cl0X
.z�x/¤0

.z�y/22Cl0X

f .cz�x/C .h2=2/
X

ŒD�2ClX 0=ClX
ŒD�¤ClX

D��DCx�y22Cl0X

f .tD/ (x;sy)

for y 2X.Fq/, where˛ D

�
h2 if .y�x/ 2 2Cl0X;
0 if .y�x/ … 2Cl0X:
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If we add up all the eigenvalue equations evaluated in the verticessy , where we lety
range over all ofX.Fq/D Cl1X , then we obtain thatX
y2X.Fq/

�yf .sy/ D hf .s0/C .h=2/
X

.z�x/2Cl0X
.z�x/¤0

f .cz�x/C .h=2/
X

ŒD�2ClX 0=ClX
ŒD�¤ClX

f .tD/ : (x;
P
sy)

8.2 The space of cusp forms

Let f be aHK-eigenfunction that is contained inAK
0 . In particular,f is not trivial.

We make no assumption of toroidality onf in this section. The cusp formf satisfies
the eigenvalue equations of the previous paragraph and additionallyf .v/D 0 if ı.v/� 1.
These equations make it possible to explicitly calculate the space of unramified cusp forms
as functions onPBun2X . We get the following result.

8.2.1 Theorem.

(i) The dimension ofAK
0 is r 0C1�h2.

(ii) The support off 2AK
0 is contained inftD; s0; c0gD2ClX 0�ClX .

(iii) If x is a place of odd degree, then̂x.f /D 0.

Proof. Observe that from Theorems 3.2.2 and 3.5.1 and Corollary 3.5.4, it follows that

AK
0 D

M
�2C

A0.ˆx ;�/
K

for every placex, where both sides are finite dimensional complex vector spaces, thus
in particularA0.ˆx ;�/

K D 0 for all but finitely many� 2 C. Let f 2 AK
0 be aHK-

eigenfunction andx a place of degree1. We first show that the eigenvalue�x of f under
ˆx equals0.

Assume that�x ¤ 0, then we conclude successively:

� f .c0/D 0 by equation (x;c0).

� f .s0/D 0 by equation (x;cx).

� f .cz�x/D 0 for all placesz ¤ x of degree1 by equation (x;cz).

� f .sy/D 0 for all placesy of degree1 by equations (x;s0) and (x;cz�x).

� f .tD/D 0 for all D 2 ClX 0�ClX by equation (x; tD).

Thusf must be trivial, which contradicts the fact that it is anHK-eigenfunction. This
means thatA0.ˆx ;�/

K D 0 if �¤ 0. ThereforeAK
0 DA0.ˆx ;0/

K .
So we know that�x D 0 for all placesx of degree1. We make the following successive

conclusions, where we always an appropriate placex of degree1 in every step:

� f .sy/D 0 for all placesy of degree1 by equation (x; tD).

� f .cz�x/D 0 for all placesz ¤ x of degree1 by equation (x;cz).
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� f .c0/C .q�1/f .s0/D 0 by equation (x;cx).

� f̨ .s0/C.h2=2/
P

ŒD�2ClX 0=ClX
ŒD�¤ClX

D��DCx�y22Cl0X

f .tD/D 0 for all placesy of degree1 by equation (x;sy),

where˛ D h2 if .y�x/ 2 2Cl0X and˛ D 0 otherwise.

This means that the support off is contained inftD; s0; c0gD2ClX 0�ClX , which proves (ii).
We haveh2C1 linearly independent equations forf . There are no further restrictions

on the values off given by the eigenvalue equations since equation (x;c0) becomes trivial.
Hence the dimension ofAK

0 DA0.ˆx ;0/
K equals

#ftD; s0; c0gD2ClX 0�ClX � .h2C1/ D .r 0
C2/� .h2C1/ D r 0

C1�h2 ;

which proves (i).
Assertion (iii) follows since the support off contains only verticesv with ı.v/ even

and thus Lemma 5.4.2 implies thatˆx.f /D 0 for every placex of odd degree. �

8.2.2 Remark. The dimension formula also follows from calculations with theta series,
cf. Schleich [56, Satz 3.3.2] and Harder, Li and Weisinger [27, Thm. 5.1].

8.2.3 Proposition. If f 2AK
0 is anHK-eigenfunction, thenf .c0/¤ 0.

Proof. Let f 2AK
0 is anHK-eigenfunction with eigencharacter�f such thatf .c0/D 0.

We will deduce thatf must be the zero function, which is not anHK-eigenfunction by
definition. This will prove the lemma.

First we conclude from Theorem 8.2.1 and equation (x;cx) thatf .s0/D 0. The only
other vertices that are possibly contained in the support off are of the formtD for a
D 2 ClX 0�ClX . We fix an arbitraryD 2 ClX 0�ClX for the rest of the proof.

SinceX 0.Fq2/D Cl1X 0 maps surjectively to ClX 0=ClX , andtD only depends on the
classŒD�2ClX 0=ClX , there is az 2X 0.Fq2/ such thattD D tz . The coveringp WX 0!X

mapsz as well as its conjugate�z to a placey 2 jX j of degree2. As classes in ClX 0, we
havey D zC�z.

In the following, we will investigate the graph of the Hecke operatorˆy with the help
of the graphs of the Hecke operatorsˆz andˆ�z , which are defined overF 0. Recall from
Lemma 5.2.5 that the mapp� W PBun2X ! PBun2X 0 restricts to an injective map

p�
W PBundec

2 X q PBuntr
2X ,�! PBundec

2 X 0 ;

andp� mapsPBungi
2 X to PBungi

2 X
0. We will denote the elements inPBundec

2 X 0 by c0
D

with D 2 ClX 0. Then we have in particular thatc0
0 D p

�.c0/, thatc0
zC�z D p

�.cy/ and
thatc0

z��z D p
�.tz/, and in each case, there is no other vertexPBun2X that is mapped to

c0
0, c

0
zC�z , andc0

z��z , respectively.
Recall from paragraph 5.1.8 thatKy denotes the sheaf onX whose stalks are trivial

except for the one aty, which equals�y . If we denote byKz andK�z the corresponding
sheaves onX 0, we have thatp�Ky 'Kz˚K�z .

Let M;M0 2 Bun2X fit into an exact sequence

0 // M0 // M // Ky
// 0 :
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Extension of constants is an exact functor, thus we obtain an exact sequence

0 // p�M0 // p�M // Kz˚K�z
// 0 ;

which splits into two exact sequences

0!M00
! p�M!Kz! 0 and 0! p�M0

!M00
!K�z! 0 ;

whereM00 2 Bun2X 0 is the kernel ofp�M!Kz .
In the language of graphs, this means that for every edge

v v′

m

between verticesv;v0 2PBun2X in EdgeGy , there are a vertexv00 2PBun2X 0, and edges

v′′

m′

v v′

m′′

v′′

and

in EdgeGz and EdgeG�z , respectively.
We apply this observation to find out all possibilities ofˆy-neighbours ofc0. The only

ˆz-neighbour ofc0 is cz , and sincez ¤ �z, theˆ�z-neighbours ofcz arecz��z D p
�.tz/

andczC�z D p
�.cy/. This means that the only possiblêy-neighbours ofc0 aretz and

cy . Theorem 5.4.6 says thatcy has multiplicityqC 1. Thus, by Proposition 4.2.4, the
neighbourtz has multiplicity.q2C1/� .qC1/D q2�q, henceUy.c0/ can be illustrated
as

c0

q+1

cy

q2
−q

tz

By the assumptions onf , it vanishes both atc0 and atcy . Thus the eigenvalue equation

�f .ˆy/f .c0/ D .qC1/f .cy/C .q
2
�q/f .tz/

implies thatf .tD/D f .tz/D 0, which completes the proof. �

8.3 The space of toroidal automorphic forms

LetF 0 D Fq2F be the constant field extension ofF and letT 0 �G be a torus correspond-
ing toF 0. Let p W X 0! X be the map of curves that corresponds toF 0=F . Recall from
Definition 1.5.13 that we defined anf 2A to beF 0-toroidal if fT 0.g/D 0 for all g 2GA .
Theorem 6.1.2 states that for an automorphic formf 2Ator.F

0/K ,

f .c0/ C
X

ŒD�2ClX 0=ClX
ŒD�¤ClX

f .tD/ D 0 : (T )

We will determine the space of unramifiedF 0-toroidal automorphic forms in this section
and draw conclusions about the space of unramified toroidal automorphic forms.
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8.3.1 Theorem.LetF 0 D Fq2F be the constant field extension ofF . Then the space of
unramifiedF 0-toroidal cusp forms is trivial.

Proof. Since the support of unramified cusp forms is contained inPBuntr
2X [ fs0; c0g

(Theorem 8.2.1), after multiplying by2=h equation (x;
P
sy) simplifies to

0 D 2f .s0/ C
X

ŒD�2ClX 0=ClX
ŒD�¤ClX

f .tD/ :

Subtracting equation (T ) from it yields

0 D 2f .s0/ � f .c0/ :

For cusp forms, equation (x;cx) reads

0 D .q�1/f .s0/Cf .c0/

and this implies thatf .c0/ D f .s0/ D 0, thus by Proposition 8.2.3, there is noHK-
eigenfunction in theHK-invariant space.A0\Ator/

K , andf must be zero. �

8.3.2 Remark. If the analogue of Waldspurger’s formula in [71, Prop. 7] for elliptic func-
tion fields is true, we deduce the following corollary: for every irreducible unramified
cuspidal representation� over an elliptic function field,L.�;1=2/¤ 0.

8.3.3 Theorem 6.2.11 puts the unramifiedF 0-toroidal Eisenstein series in connection with
the zeros of the zeta-function ofF 0. Let�F 0 D j j

� i= lnq , then by class field theory (Lemma
2.2.10),

�F 0.s/ D �F .s/ � LF .�F 0 ; s/ D �F .s/ � �F .sC
� i

lnq
/ ;

where we regards as an element inC= 2� i
lnq Z.

For a curve of genus1,

�F .s/ D
qT 2 C

�
h � .qC1/

�
T C 1

.1 � T /.1 � qT /
;

whereT D q�s ([55, Thm. 5.9]). This means that

�F .s/D 0 if and only if qT 2 C
�
h � .qC1/

�
T C 1 D 0 :

8.3.4 Let s be a zero of�F and recall the notion of a pair of zeros from paragraph 6.2.12.
Thenfs;1�sg is the only pair of zeros of�F , which is of order1, andfs� � i

lnq ;1�sC
� i
lnq g

is the only pair of zeros ofLF .�F 0 ; � /, which is also of order1.
Note thatF 0 is also of genus1, but has larger constant fieldFq2 . This means that�F 0

has only one pair of zeros modulo� i
lnqZ, but it vanishes at both pairs of zerosfs;1� sg and

fs� � i
lnq ;1� sC

� i
lnq g as function ofs 2 C= 2� i

lnq Z.
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8.3.5 Lemma. The following are equivalent.

(i) �F 0 has a pair of zeros of order2.

(ii) 1
2
C

� i
2 lnq is a zero of�F .

(iii) hD qC1.

Proof. Let s be a zero of�F . Then (i) holds if and only if1� s � sC � i
lnq .mod 2� i

lnq Z/,
which is equivalent to (ii).

Puts D 1
2
C

� i
2 lnq andT D q�s D iq�1=2. Then

�F .s/ D
qi2q�1C

�
h� .qC1/

�
iq�1=2C1

.1� iq�1=2/.1� iq1=2/
D
�
h� .qC1/

� iq�1=2

.1� iq�1=2/.1� iq1=2/„ ƒ‚ …
¤0

is zero if and only ifhD qC1, hence the equivalence of (ii) and (iii). �

8.3.6 Theorem.Let sC1=2 be a zero of�F andW �„0 be set of all�D ! j j1=2 such
that!2 D 1, but!jCl0X ¤ 1. If h¤ qC1, thenAtor.F

0/K is generated byn
E. � ; j js/; E. � ; j jsC� i= lnq/; R. � ;�/

o
�2W

and ifhD qC1, thenAtor.F
0/K is generated byn

E. � ; j js/; E.1/. � ; j js/; R. � ;�/
o
�2W

:

In particular, dimAtor.F
0/K D 2h2.

Proof. By Theorem 8.3.1, we have
�
Ator.F

0/\A0

�K
D 0 and by Theorem 6.3.7, we have�

Ator.F
0/\R

�K
D fR. � ;�/g�2W . By definition,�D ! j j1=2 2W if and only if ! is an

unramified character that factors through ClX =2ClX and that is nontrivial restricted to
Cl0F . As we have explained in the proof of Proposition 4.4.11 and in the beginning of
section 4.5, ClX =2ClX is a group of order2h2. The character group of ClX =2ClX is
of the same order. There are two quadratic characters such that!jCl0X is trivial, namely,

the trivial character andj j� i= lnq . Consequently, the cardinality ofW is 2h2�2.
By Theorem 2.2.8, theL-functionsLF 0.�; � / are constant for quasi-characters� of

A�
F 0 that are not of the formj js. Hence the only toroidal Eisenstein series correspond to

the pairs of zeros of�F 0 . These aref1=2C s;1=2� sg andf1=2C s� � i
lnq ;1=2� sC

� i
lnq g,

and by the previous lemma, they are different and of order1 if h ¤ qC 1 and they are

equal and thus of order2 if hD qC1. This determines
�
Ator.F

0/\E
�K

as indicated and
proves dimAtor.F

0/K D 2h2. �

8.3.7 Remark. In caseq D pa for a primep ¤ 2;3 and an odd integera, the curveX is
isomorphic to a supersingular elliptic curve if and only ifh D qC 1, cf. [73, Thm. 4.1].
For theseq, an elliptic curve with function fieldF is thus not supersingular if and only
if the space ofFq2F -toroidal automorphic forms admits a basis ofHK-eigenfunctions.
However, for otherq, there are supersingular elliptic curves withh¤ qC1.
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8.3.8 Proposition. LetsC1=2 be a zero of�F . Then
�
E\Anr

tor.F ˚F /
�K

is2-dimensional
and generated by ˚

E. � ; j js/; E.1/. � ; j js/
	
:

Proof. Let T � G be the diagonal torus and� 2 „0 such that�2 ¤ j j˙1. By Theorem
6.2.8 (ii),

ET .e;�/ D
�
L.�;1=2/

�2
:

The only pair of zeros ofL.�;1=2/ is fj js ; j j�sg and it is of order1. Thusfj js ; j j�sg is
the only pair of zeros of

�
L.�;1=2/

�2
and it is of order2. �

8.3.9 Let F be an elliptic function field with even class number. Then the class group
has a nontrivial character�0 of order2, which can be extended to a character� of the
divisor class group of order2 by Proposition 2.1.6. Equivalently,� is an unramified quasi-
character ofA� of order2 that is trivial onF � and whose kernel does not containA�

0 .
By class field theory, there is an unramified quadratic field extensionE=F such that

NE=F .AE /D ker�. Let �E 2„0 be the quasi-character that corresponds toE, cf. para-
graph 6.2.10. Then�D �E . Note that�E is not equal toj js for any s 2 C, henceE is
not the constant field extension, but a separable geometric field extension ofF , i.e. the
constant field ofE equals the constant field ofF .

8.3.10 Proposition.LetF be an elliptic function field with even class number. Then there
exist a separable geometric quadratic unramified field extensionE=F . Let �E be the

corresponding quasi-character. LetsC 1=2 be a zero of�F . Then
�
E \Anr

tor.E/
�K

is
2-dimensional and generated by˚

E. � ; j js/; E. � ;�E j j
s/
	
:

Proof. If the class group ofF is of even order, then there exists a separable geometric
quadratic unramified field extensionE=F as explained before.

By Corollary 6.2.4,ET .e;�/ isE-toroidal if and only if� is a zero of

L.�;1=2/L.��E ;1=2/ :

The only pair of zeros ofL.�;1=2/ is fj js ; j j�sg and it is of order1. The only pair of
zeros ofL.��E ;1=2/ is f�E j j

s ;��1
E j j

�s
g and it is of order1. �

8.3.11 Theorem.LetF be a elliptic function field with class numberh and constantsFq .
Let sC1=2 be a zero of�F .

(i) If either the characteristic ofF is odd orh¤ qC1, thenAK
tor is 1-dimensional and

spanned by the Eisenstein seriesE. � ; j js/.

(ii) If the characteristic ofF is 2 andhD qC1, thenAK
tor is either1-dimensional and

spanned byE. � ; j js/ or 2-dimensional and spanned by
˚
E. � ; j js/; E.1/. � ; j js/

	
.

Proof. By Theorem 6.2.11,AK
tor containsE. � ; j js/. The spaceAK

tor is the intersection of
the spacesAK

tor.E/ for all quadratic separable algebra extensionsE=F . From Theorem
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6.3.8, we know thatAtor does not contain residues of Eisenstein series. Theorem 8.3.6 de-
scribesAK

tor.F
0/ for the constant field extensionF 0, which narrows down the possibilities

to a 1 or 2-dimensional space spanned by certain functions from the Eisenstein part. In
particular, the description of these functions in Theorem 8.3.6 implies (ii).

If h¤ qC1, then�F 0 has simple zeros by Lemma 8.3.5. Hence the intersection ofAK
tor

with
�
E \Anr

tor.F ˚F /
�K

as described in Proposition 8.3.8 is1-dimensional and spanned
byE. � ; j js/.

If, however,hD qC1, but the characteristic ofF is odd, thenhD qC1 is even. There
is thus a separable geometric quadratic unramified field extensionE=F . Since�T restricts

to a nontrivial character on the class group, the intersection ofAK
tor with

�
E \Anr

tor.E/
�K

as described in Proposition 8.3.10 is1-dimensional and spanned byE. � ; j js/. �

8.3.12 Corollary. LetF be an elliptic function field with constant fieldFq and class num-
berh. If either the characteristic ofF is not2 or h¤ qC1, then there is for every� 2„0
and for everys 2 C a quadratic character! 2„ such thatL.�!;s/¤ 0.

Note that a proof of Conjecture 6.2.15 implies:

8.3.13 Conjecture.Let F be an elliptic function field of genus1 and sC 1=2 a zero of
�F .s/. The spaceAK

tor is 1-dimensional and spanned byE. � ; j js/.

8.3.14 Remark.The proof of the last theorem depends on many results from the theory for
toroidal automorphic forms as developed in this thesis, including the proof of admissibility
of Anr

tor. In the particular case that the class number is1, however, it is possible to deduce
the theorem comparatively quickly from results in the literature ([15]).

8.4 Impact on the Riemann hypothesis

As explained in Theorem 6.6.6, the analogue of the Riemann hypothesis for function fields
of genus1 curves over finite fields follows from narrowing down the possibilities for the
eigenvalues of unramified toroidalHK-eigenfunctions under one Hecke operatorˆx to lie
in Œ�2q1=2x ;2q

1=2
x �. We will investigate the eigenvalue equations enriched by the toroidal

condition and see how close we can come to this goal. For this, we will neither use the
explicit form of the zeta function nor the decomposition theory of the space of automor-
phic forms. We only apply the theory of graphs of Hecke operators to the connection
between zeros of the zeta function, toroidal Eisenstein series and unitarizable or tempered
representations as explained in Chapter 6.

8.4.1 If AK
tor is trivial, then it does not contain any Eisenstein series and therefore the

zeta function ofF has no zero (Corollary 6.2.13). Then the analogue of the Riemann
hypothesis holds for trivial reasons. Hence assume thatAK

tor is not trivial. By finite-
dimensionality (Theorem 6.1.8),AK

tor contains anHK-eigenfunction, which we denote

by f . Let furtherx 2 jX j andˆx.f / D �xf . Since0 lies in Œ�2q1=2x ;2q
1=2
x �, it is no

restriction to assume that�x ¤ 0 for somex 2X.Fq/.
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In the following lemma we will refer to the eigenvalue equations from paragraph 8.1.5
and the begin of section 8.3. LetF 0=F be the constant field extension andp WX 0!X the
corresponding map of curves.

8.4.2 Lemma. If f is a toroidal HK-eigenfunction such that there exist a placex of
degree1 and a�¤ 0 with ˆx.f /D �f , then there are complex numbersa0, a1, b, f0,
f 0
0 , f1, whereb ¤ 0, and a character! WClX!f˙1g such that for ally;z 2X.Fq/ with
z ¤ x and allD 2 ClX 0�ClX , the equalities

f .tD/D !.DC�D/b f .sy/D !.y/a1 f .s0/D a0

f .c0/D f0 f .cz�x/D !.z�x/f
0
0 f .cx/D !.x/f1

�z D !.z/�

hold. The eigenvalue equations and the toroidal condition can be formulated as

�b D .qC1/a1 by (x; tD);

�a0 D qa1Cf1 by (x;s0);

�f0 D .qC1/f1 by (x;c0);

�f 0
0 D .q�1/a1C2f1 by (x;cz�x);

f0C .h
0
�1/b D 0 by (T ) if !jCl0X is trivial,

f0�b D 0 by (T ) if !jCl0X is not trivial.

Proof. Let f be a toroidalHK-eigenfunction,x a place of degree1 and a�¤ 0 such that
ˆx.f /D �f . First we reason thatf cannot vanish at all vertices of the formtD.

Assume thatf .tD/D 0 for all D 2 ClX 0�ClX , then we conclude successively:

� f .c0/D 0 by equation (T ).

� f .sy/D 0 for all placesy of degree1 by equation (x; tD).

� f .cx/D 0 for all placesx of degree1 by equation (x;c0).

� f .s0/D 0 by equation (x;s0).

� f .cz�x/D 0 for all placesz ¤ x of degree1 by equation (x;cz�x).

Hencef also vanishes on the cusps and is trivial. But anHK-eigenfunction is not trivial
by definition. This is a contradiction.

LetD 2ClX 0�ClX such thatf .tD/¤ 0. Then equation (x; tD) implies that we have
.qC 1/f .sD��DCx/ D �xf .tD/ ¤ 0. For everyz 2 X.Fq/ andD0 2 ClX 0�ClX such
thatD0��D0Cz�DC�D�x 2 2Cl0X ,

�zf .tD0/D .qC1/f .sD0��D0Cz/D .qC1/f .sD��DCx/D �xf .tD/ :

In particular if we takez D x, thenf .tD0/D f .tD/ if D0��D0�DC�D 2 2Cl0X and
if we takeD0 DD, then�z D �x if z�x 2 2Cl0X . By exchanging the roles ofx andz,
we obtain

�xf .tD0/D .qC1/f .sD0C�D0Cx/D .qC1/f .sDC�DCz/D �zf .tD/
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and by multiplying both equalities, we get

�2xf .tD/f .tD0/ D �2zf .tD/f .tD0/ ;

which means that�z D˙�x , and thus by the previous equation,f .tD0/D˙f .tD/. This
holds for allz 2X.Fq/ andD 2ClX 0, since we can find aD0 for everyz and az for every
D0 such thatD0��D0Cz�DC�D�x 2 2Cl0X .

Define!.z�x/ WD �z=�x to be the sign by which�z and�x differ. Note that! is
well-defined even if we varyx, since ifz0�x0 D z�x andD0��D0Cz�DC�D�x 2

2Cl0X , then alsoD0��D0Cz0�DC�D�x0 2 2Cl0X and thus�z0f .tD0/D �x0f .tD/,
which implies that�z0=�x0 D �z=�x . Clearly,! is multiplicative, and if we put!.x/D 1
for somex 2X.Fq/, we obtain a character! W ClX ! f˙1g.

This means that if we define�D!.x/�x for onex 2X.Fq/, then we have�x D!.x/�
for all x 2 X.Fq/ and if we defineb D !.D��D/f .tD/ for oneD 2 ClX 0�ClX , then
we havef .tD/D !.D��D/b for all D 2 ClX 0�ClX .

From the equations

!.D��DCx/�b D �xf .tD/ D .qC1/f .sD��DCx/

it follows that if we definea1 D !.y/f .sy/ for oney 2 X.Fq/, thenf .sy/D !.y/a1 for
all y 2X.Fq/. In this notation, equation (x; tD) becomes�b D .qC1/a1.

Puta0 D f .s0/ andf0 D f .c0/. Equation (x;c0) implies

!.x/�f0 D �xf .c0/ D .qC1/f .cx/

for everyx 2X.Fq/, hence if we definef1D !.x/f .cx/ for onex 2X.Fq/, then we have
f .cx/D !.x/f1 for all x 2X.Fq/, and equation (x;c0) becomes�f0 D .qC1/f1.

For allx;z 2X.Fq/ such thatx ¤ z, equation (x;cz�x) implies

!.x/�f .cz�x/ D �xf .cz�x/

D .q�1/f .sz/Cf .cz/Cf .c2x�z/ D .q�1/!.z/a1C2!.z/f1 ;

hence if we putf 0
0 D !.z � x/f .cz�x/ for one choice ofz � x 2 Cl0X � f0g, then

f .cz�x/D !.z�x/f
0
0 for all choices ofz�x 2 Cl0X �f0g, and equation (x;cz�x) be-

comes�f 0
0 D .q�1/a1C2f1.

Observe that if! is trivial on Cl0X , then equation (T ) becomesf0C .h0� 1/b D 0,
but if ! is not trivial on Cl0X , it becomesf0�b D f0C .h0=2�1/bC .�1/.h0=2/b D 0.

This proves everything. �

In the following discussion, we keep the notation of the lemma.

8.4.3 In the case that! is trivial on Cl0X , we conclude successively that

� f0 D�.h
0�1/b by equation (T ).

� a1 D
�
qC1

b by equation (x; tD).

� f1 D�
.h0�1/�
qC1

b by equation (x;c0).

� a0 D
q
qC1

b� h0�1
qC1

b by equation (x;s0).
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� f 0
0 D

q�1
qC1

b�2h
0�1
qC1

b by equation (x;cz�x).

So far, we did not touch equation (x;
P
sy). Since! is trivial on Cl0X , together with the

preceding identities, this equation yields that

h�
�

qC1
b D h�a1 D

(x;
P
sy )

ha0 C
h

2
.h�1/f 0

0 C
h

2
.h0
�1/b

D h
� q

qC1
b �

h0�1

qC1
b
�
C
h

2
.h�1/

� q�1
qC1

b � 2
h0�1

qC1
b
�
C
h

2
.h0
�1/b

If we use thath0 D 2.qC 1/�h (Lemma 8.1.2), divide throughb (which is not zero by
assumption) and reorganise the terms, we find out that

�2 D .qC1�h/2 :

8.4.4 In the case that! is not trivial on Cl0X , we conclude successively that

� f0 D b by equation (T ).

� a1 D
�
qC1

b D f1 by equations (x; tD) and (x;c0).

� a0 D b by equation (x;s0).

� f 0
0 D b by equation (x;cz�x).

� �a1 D .qC1/b by equation (x;sy).

All these equations can hold only if

�2 D .qC1/2 :

We summarise what we found out in this section about the eigenvalues of a toroidal
HK-eigenfunction. LetX.Fq/D fx1; : : : ;xhg the set ofFq-rational points.

8.4.5 Proposition. Let f 2AK
tor be anHK-eigenfunction with eigencharacter�f . Then

there are only the following possibilities for the eigenvalues�x1
; : : : ;�xh

.

(i) �x1
D �� � D �xh

D 0.

(ii) There is a� 2C� with �2 D .qC1�h/2 and�z D � for every placez of degree1.

(iii) There is a character! WClX!f˙1g that is not trivial onCl0X and a� 2C� with
�2 D .qC1/2 such that�z D !.z/� for every placez of degree1.

8.4.6 We discuss whichf 2AK
tor can have the eigenvalues as described in the proposition.

Recall from paragraph 3.7.18 that given�x1
; : : : ;�xh

, there is up to constant multiple at
most oneHK-eigenfunctionf 2 eE such that̂ xi

f D �xi
f for all i D 1; : : : ;h. Recall

from Lemmas 3.3.2 and 3.4.2 that�z.�/ D q1=2
�
��1.�z/C�.�z/

�
is the eigenvalue of

QE. � ;�/ underˆz for everyz 2 jX j and� 2„0.
If �x1

D �� � D �xh
D 0, thenf is a linear combination ofE. � ; j j� i=2 lnq/ and a cusp

form, cf. Theorem 8.2.1 (iii). We showed in Theorem 8.3.1 that there are no toroidal
cusp forms, sof could only beE. � ; j j� i=2 lnq/ (Theorem 3.6.3). We come back to this
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case in a moment, but remark that this compatible with the Riemann hypothesis since
0 2 Œ�2q1=2;2q1=2�.

Let now� ¤ 0 and! W ClX ! f˙1g be a character such that�z D !.z/� for every
placez of degree1. If ! is not trivial on Cl0X , then j�j D .qC 1/ … Œ�2q1=2;2q1=2�.
We determine the automorphic forms that admit such eigenvalues. Let�D ! j j1=2. The
eigenvalues�z.�/ of R. � ;�/ satisfy

�z.�/ D q1=2
�
!.z/q1=2C!.z/q�1=2

�
D !.z/.qC1/

and if we put�F 0 D j j
� i= lnq , then the eigenvalues�z.��F 0/ of R. � ;��F 0/ satisfy

�z.��F 0/ D q1=2
�
!.z/ j�zj

� i= lnq q�1=2
C!.z/ j�zj

� i= lnq q�1=2
�
D �!.z/.qC1/ ;

Since there are only two possibilities for a sign, the eigenvalues�x1
; : : : ;�xh

determine
exactly those two functions (up to a multiple). These residues are indeedF 0-toroidal
(Theorem 8.3.6), but we excluded them to be toroidal (Theorem 8.3.11), so this case does
not obstruct the condition that� 2 Œ�2q1=2;2q1=2� for all � such that there is af 2AK

tor
with ˆx.f /D �f .

If, however,! is trivial, then�x1
D �� � D �xh

D ˙.qC 1� h/. Since residues of
Eisenstein series have eigenvalues˙.qC 1/, we only have to look for Eisenstein series
E. � ;�/ such that�z.�/D �z for all z 2X.Fq/. First leth¤ qC1. Then

P
z2X.Fq/

�z D

h.qC 1� h/ ¤ 0, and Proposition 3.7.9 implies that we only have to consider quasi-
characters� of the formj js. Hence we search for solutions of

q1=2.qsCq�s/D˙.qC1�h/ ” q�2s
˙
�
h� .qC1/

�
q�1=2�s

C1D 0 :

With the substitutionT D q�.1=2Cs/, this can be rewritten as�
qT 2 C

�
h � .qC1/

�
T C 1

� �
qT 2 �

�
h � .qC1/

�
T C 1

�
D 0 :

Note that by Theorem 6.2.3 we can conclude that the left hand side of the equation is a
multiple of �F 0.1=2C s/ without making use of the explicit form of�F 0 . Thus for every
zeros0 of �F 0 , the complex numberT �.1=2Cs0/ is a solution to that equation.

If h D qC 1, then we are in the exceptional case that�x1
D �� � D �xh

D 0, and the
only Eisenstein series with these eigenvalues isE. � ; j j� i=2 lnq/ (up to a multiple). We saw
in Theorem 8.3.6, that this is precisely the case where a derivative of an Eisenstein series
occurs, which substitutes the missing second solution.

8.4.7 The equation�2D .qC1�h/2 implies that� 2R. By Corollary 6.6.6, the question
if we can deduce the Riemann-hypothesis for curves of genus1 over a finite field depends
on whether�D˙.qC 1�h/ 2 Œ�2q1=2;2q1=2�. In explicit cases, this is easy to check,
but the general statement is an immediate corollary of Hasse’s theorem, i.e. the Riemann
hypothesis for elliptic function fields ([55, Prop. 5.11]).

Since our method to study the toroidal conditions relies on the structure of the graphs
of Hecke operators, and this in turn depends on the class number, it should come as no
surprise that we find that eigenvalue estimates become equivalent to class number esti-
mates. This does appear to imply that our method of computingAK

tor cannot be used to
give an alternative proof of Hasse’s theorem. Nevertheless, we show the connection be-
tween different estimations forh, unitarizability and the possible solutions to the equation
q1=2.qsCq�s/D˙.qC1�h/.
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� (The trivial estimate h> 0)
This in general doesnot imply that Anr

tor is unitarizable, cf. Lemma 6.6.4. The
solutionss for varyingh > 0—considered as a complex number modulo.2� i

lnq /—are
drawn as the solid line in the picture:

0

πi
lnq

2πi
lnq

0 1
2 1

The circles on the solid lines indicate the values of thoses such thatq1=2.qsCq�s/

is the eigenvalue of a residuum of an Eisenstein series, which occur as a solution to
the equationq1=2.qsCq�s/D˙.qC1�h/ if and only if hD 0 or hD 2qC2.

� (The estimate0< h< 2qC2 given by embeddingX into P2)
This estimate follows from the following. Every curve of genus1 is given by a
Weierstrass equation of the form

Y 2Ca1X Y Ca3Y D X3Ca2X
2
Ca4XCa6 :

For every value forX , there are at most two solutions inY and there is an additional
point at infinity. Hence the numberh of Fq-rational points ofX satisfies the estimate
0 < h < 2qC2.

By Lemma 6.6.4 and paragraph 6.7.4, this estimate is equivalent to the fact that
every irreducible subquotient ofAnr

tor is aunitarizable representation. The possible
values fors are drawn as the solid line in the picture:

0

πi
lnq

2πi
lnq

0 1
2 1

� (The estimateqC1�2q1=2 � h� qC1C2q1=2 from Hasse’s theorem)
The step from the previous estimate to this estimate is precisely what Hasse proved
in [29]. The estimate is equivalent to the fact that every irreducible subquotient of
Anr

tor is a tempered representation (Lemma 6.6.3). The possible values fors are
drawn as the solid line in the picture:
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0

2πi
lnq

0 1
2 1

8.4.8 (Concluding remark) The calculations that lead to the conclusion that� is a real
number only involve the geometric interpretation of one toroidal condition and enough
knowledge about the graphs of Hecke operators. We neither make use of the explicit form
of the zeta function nor of our knowledge of the structure of the space of automorphic
forms. This already shows a certain strength of the theory.

An estimate of the class number, which only uses the fact that every elliptic curve
has a Weierstrass equation, restricts the zeros of the zeta function to the possibilities that
correspond to unitarizable representations. This is the result whose analogue forQ would
imply the validity of the Riemann hypothesis.







Samenvatting

Klassieke automorfe vormen

Alvorens het begrip automorfe vorm voor functielichamen over een eindig lichaam in te
voeren, zullen we in de eerste paragraaf eerst de klassieke notie van automorfe vorm her-
halen. Voor de experts: in deze inleiding beperken we ons tot onvertakte automorfe vor-
men, en zullen dat niet steeds herhalen. Tenslotte merken we op dat de notatie in deze
samenvatting niet volledig in overeenstemming is met die in de hoofdtekst.

Zij H D fxC iy 2 C j x;y 2 R;y > 0g het complexe bovenhalfvlak van Poincaré en
SL2Z de group van geheeltallige twee-bij-twee matrices met determinant1. Deze group
werkt als groep van isometrieën voor de Poincaré-metriek opH door Möbiustransfor-
maties als volgt: 0@a b

c d

1A:z D azCb

czCd
:

Afbeelding 1 laat een fundamentaaldomein zien voor deze actie, alsook de bijbehorende
quotiëntafbeelding. Op de gladde complexwaardige functies opH werkt de Laplace-
Beltrami-operator�D�y2

�
@2

@x2 C
@2

@y2

�
.

Een gladde functief W H! C wordtautomorfe vormgenoemt alsf voldoet aan

� f is invariant onder de actie van SL2Z: f .
:z/D f .z/ voor alle
 2 SL2Z;

� f is van polynomiale groei: er bestaat eenn 2 N zodatf .iy/ 2O.jyjn/;

� f is�-eindig: f�if gi�0 brengt een eindig-dimensionale vectorruimte voort.

De ruimte van automorfe vormen wordt genoteerd alsAQ.
De Poincaré-metriek staat in een nauw verband met de Laplace-Beltrami-operator. Zij

z 2 H en S�.z/ de richtingsruimte vanz. Zij zs het unieke element op afstand1 van z
op een geodetische halflijn met beginpuntz en aanvangsrichtings 2 S�.z/. Dan is er een
meromorfe functiec WC!C zodat voor elke gladde eigenfunctief WH!C van� (d.w.z.
�f D �f voor een� 2 C) geldt dat

�f .z/ D c.�/

Z
S�.z/

f .zs/ds :

143
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Voor het begrip van de volgende paragrafen is het niet strikt noodzakelijk om te weten
wat adeles zijn, maar we beschrijven wel even kort de omformulering van het quotiënt
SL2Z nH in de taal van adelesAQ overQ (voor een definitie zie 1.1.3). ZijZ het centrum
van GL2 enKQ DO2�

Q
GL2Zp, waarbijO2 de orthogonale group in GL2.R/ is, Zp de

p-adische getallen zijn en het product over alle priemgetallen loopt. Als gevolg van sterke
approximatie voorSL2 bestaat er dan een homeomorfisme

SL2Z nH Š GL2QZ.AQ/nGL2AQ =KQ:

Automorfe vormen voor functielichamen

Zij Fq het lichaam metq elementen. Er bestaat een sterke analogie tussenQ en het ra-
tionale functielichaamF D Fq.t/, d.w.z. het breukenlichaam van de ring van veeltermen
overFq . Met name bestaat er het volgende woordenboek:

Q F D Fq.t/
Z OF D FqŒt �
j j j j1 W P=Q 7! qdegQ�degP

R F1 D Fq..t�1//
n.v.t. O1 D FqŒŒt�1��

H T .0/ DGL2F1 =Z.F1/GL2O1

SL2Z GL2OF
AQ A D AF
KQ K (zie 1.3.1)

Ook in het geval van een functielichaam impliceert sterke approximatie voor SL2 het
bestaan van een homeomorfisme

GL2OF nT .0/
Š GL2F Z.A/nGL2A =K;

waarbijT .0/ als discrete verzameling bekeken wordt. OmdatT .0/ uit rechts-nevenklassen
van matrices bestaat, is er een natuurlijke werking van GL2OF door links-vermenigvuldigen
van matrices.

Een functief W T .0/ ! C wordt automorfe vorm genoemd alsf .
:g/ D f .g/ voor
alle
 2GL2OF en er eenn 2N is zodatf

��
t i 0
0 1

��
2O.

ˇ̌
t i
ˇ̌n
1
/. De ruimte van automorfe

vormen wordt metA genoteerd.
De rol van de Laplace-Beltrami-operator� wordt in de wereld van functielichamen

overgenomen door de Hecke-operatorˆ gedefineerd door

ˆ.f /.g/ D f
��
1 0
0 t�1

�
:g„ ƒ‚ …

DWg1

�
C

X
b2Fq

f
��
t�1 b
0 1

�
:g„ ƒ‚ …

DWgb

�
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T

mod GL2 OF

q+1 q 1
GL2 OF \T

q q1 1

c0 c1 c2 c3
spits

mod SL2 Z

spits

SL2 Z\H

i

− 1
2

i

1
20

H

Afbeelding 1: Het bovenhalfvlak van Poincaré Afbeelding 2: De Bruhat-Tits-boom

voorf 2A eng 2 T .0/. Geldt f̂ D �f voor een� 2C, dan volgt uit de definitie van̂
dat

�f .g/ D

Z
P1.Fq/

f .gs/ds

alsP1.Fq/D Fq [f1g van de discrete maat voorzien wordt. Door deze formule te ver-
gelijken met de corresponderende klassieke integraal wordt duidelijk datgs de punten
‘op afstand1’ van g moeten zijn. Dit wordt gerealiseerd door een graafT die T .0/ als
knooppunten heeft, waaring precies met de knooppuntengs door een tak is verbonden.
Deze graaf wordt ook de Bruhat-Tits-boom van PGL2F1 genoemd en is inderdaad een
boom. De actie van GL2OF heeft een natuurlijke voortzetting op de boom.

Afbeelding 2 laat de analogie met het bovenhalfvlak van Poincaré zien. In de quotiëntaf-
beelding van de boom geven de getallen naast een knooppunt aan hoeveel takken uit de
boom erop worden afgebeeld. Verder isci 2GL2OF nT .0/ de klasse van de matrix

�
t i 0
0 1

�
.
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Bewijs van de Riemannhypothese voorF

De zetafunctie voorF wordt gedefineerd door de formule

�F .s/ D
1

1�q�s
�

Y
P2OF

monisch and irreducibel

1

1�q�s�degP

als Res > 1. De eerste faktor in het product komt overeen met de gamma-factor voor
de Riemann zetafunctie. Ook voor eindige lichaamuitbreidingenE vanF , zogenoemde
globale functielichamen, is een zetafunctie�E op een vergelijkbare manier gedefinieerd.
Voor deze zetafuncties is de Riemannhypothese bewezen, d.w.z. dat alle nulpunten van�E
reëel deel1=2 hebben. VoorF een rationaal functielichaam is zelfs�F de constante functie
1, maar de zetafunctie van een algemeen globaal functielichaam heeft wel nulpunten en
voor deze is de geldigheid van de Riemannhypothese een diepe stelling van Hasse en Weil.

Een stelling van Erich Hecke geeft een verband tussen zetafuncties en een integraal
over Eisensteinreeksen als functies op het bovenhalfvlak van Poincaré. De adelische ver-
taling geldt ook voor globale functielichamen:

Stelling (Hecke, 1959).Voor elkeg 2 GL2AE en elke overE gedefinieerde maximale
anisotrope torusT �GL2 bestaat een holomorfe functieeT;g WC�f0;1g!C zodat voor
elkes 2 C�f0;1g, Z

T.F /Z.A/nT.A/

E.s/.tg/dt D eT;g.s/ � �F .sC1=2/

geldt waarbijE.s/ de Eisensteinreeks van gewichts is.

Deze formulering stamt uit een artikel van Don Zagier uit 1979, die verder opmerkte
dat voor elk nulpuntsC1=2 van de zetafunctie bovenstaande integraal van de Eisenstein-
reeks van gewichts onafhankelijk vanT en g verdwijnt. Hij concludeerde dat de Rie-
mannhypothese voorE volgt als de ruimteAtor van automorfe vormen waarvoor boven-
staande integraal voor elkeT eng verdwijnt een getemperde voorstelling is. Hij noemde
de automorfe vormen in deze ruimtetoroïdaal.

Hiermee komen we nu aan bij de inhoud van dit proefschrift. We bestuderen ruimten
van toroïdale automorfe vormen voor functie lichamen.

We illustreren eerst onze methode met het het ‘triviale’ geval van een rationaal func-
tielichaamF D Fq.t/.

Allereerst merken we op datAtor invariant is onder de actie van Hecke-operatoren.
Door de interpretatie vanT .0/ als verzameling van isomorfieklassen van rang-twee

vectorbundels over de projectieve lijn overFq en door de interpretatie van een van de tori
als sporen van lijnbundels over de projectieve lijn overFq2 kan de integraal in dit geval
berekend worden als som van functiewaarden in de hoekpunten van het quotiënt van de
boom. Op die manier kunnen we aantonen dat alsf 2Ator, danf .c0/D 0, bekeken als
functie op GL2OF nT .0/.

Nu is genoeg bekend om een nieuwe bewijs voor de Riemannhypothese voor�F te
geven. Alhoewel het hier een soort “met een kanon op een mug schieten” betreft, is het
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opmerkelijke van dit bewijs dat het geen gebruik maakt van de expliciete vorm van de
zetafunctie.

Stelling. De ruimte van toroïdale automorfe vormen voor een rationaal functielichaam is
triviaal: AtorD f0g. Bijgevolg heeft�F geen nulpunten.

Bewijs.Het tweede deel van de stelling volgt uit het eerste deel door gebruik te maken
van de stelling van Hecke. Voor het bewijs van het eerste deel: zijf 2Ator, dusf .c0/D 0.
Dan zijn ook allê i .f / toroïdaal, duŝ i .f /.c0/D 0. Uit de gewichten van GL2OF nT

kan men deze termen berekenen en inductief de conclusie trekken dat

0 D ˆ.f /.c0/ D .qC1/f .c1/ ) f .c1/D 0

0 D ˆ2.f /.c0/ D .qC1/f .c2/Cq.qC1/f .c0/ ) f .c2/D 0

:::
:::

0 D ˆi .f /.c0/ D .qC1/f .ci /C “lagere termen” ) f .ci /D 0

Dus moetf de nulfunctie zijn. �

Bovenstaande theorie werkt niet alleen voorF , maar voor elk globaal functielichaam
E. In het hoofddeel van dit proefschrift wordt de ruimte van toroïdale automorfe vormen
voor een dergelijk algemeen functielichaamE onderzocht. Alsg het geslacht enh het
klassengetal vanE zijn enk de dimensie van de ruimte van spitsenvormen is, dan bewijzen
we de afschatting

gC .h�1/.g�1/ � dimAtor � 2gC2.h�1/.g�1/Ck :

Voor het bewijs wordt eerst een algemene theorie van ‘grafen van Hecke-operatoren’ ont-
wikkeld, die de theorie van Serre over het quotiënt van de Bruhat-Tits-boom veralge-
meniseert. Vervolgens wordt gebruik gemaakt van de interpretatie van de hoekpunten
van de boom als isomorfiekassen van rang-twee vectorbundels op de kromme die bijE

hoort, om een structuurtheorie voor deze grafen op te stellen.
In het geval van een elliptisch functielichaamE (d.w.z.g D 1 enE heeft een plaats

van graad 1) tonen we aan dat de ruimte van toroïdale automorfe vormen precies van
dimensie 1 is, en wordt opgespannen door een Eisensteinreeks van gewicht een nulpunt
van de zetafunctie vanE (het bewijs werkt niet alsq D 2 enhD qC1).

We leiden ook uit werk van Hasse, Weil en Drinfeld af dat de irreducibele quotiën-
ten van de voorstellingsruimte van toroïdale vormen getemperd zijn. Momenteel is niet
duidelijk hoe omgekeerd de stelling van Hasse en Weil (equivalent van de Riemannhy-
pothese voorE) kan worden afgeleid uit de hier ontwikkelde algemene theorie van toroï-
dale automorfe vormen.





Zusammenfassung

„Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.“

Leopold Kronecker, 1886

Zahlentheorie

Kroneckers Ausspruch war ein Bekenntnis zum mathematischen Konstruktivismus ([75,
S. 19]) – er wollte die Mathematik auf die Arithmetik der ganzen Zahlen zurückführen, alle
mathematischen Aussagen sollten in endlich vielen logischen Schlüssen nachvollziehbar
sein. Obwohl heutzutage der Beweis durch Widerspruch in der Mathematik weitgehend
akzeptiert ist und die Frage, ob ein solcher Beweis durch eine Konstruktion ersetzt werden
kann, als eine philosophische betrachtet wird, nähren die Probleme um die Arithmetik der
ganzen Zahlen einen blühenden Zweig der Mathematik: die Zahlentheorie.

Um den Keim der Komplexität in der Arithmetik aufzuspüren, lohnt es sich einen
Schritt zurück zu tun und nur die positiven ganzen Zahlen

1; 2; 3; 4; 5; 6; 7; : : :

zu betrachten. Diese sind mit zwei natürlichen Operationen ausgestattet: Der Addition und
der Multiplikation. Bezüglich der Addition hat jede positive ganze Zahln eine eindeutige
Darstellung als Summe von Einsen:

n D 1C�� �C1„ ƒ‚ …
n-mal

:

Die Bausteine der Multiplikation sind Primzahlen

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; : : : ;

die dadurch charakterisiert sind, daß sie ungleich1 sind und nur durch1 und sich selbst
teilbar sind. Jede positive ganze Zahln besitzt eine eindeutige Primfaktorzerlegung, was
bedeutet, daß es eine Darstellung vonn als Produkt

n D p1 � � � � �pr

149
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von Primzahlenp1; : : : ;pr gibt, welche bis auf Reihenfolge eindeutig bestimmt sind. Die
Menge aller erdenklichen Kombinationen von Produkten von Primzahlen

2; 3; 2 �2; 5; 2 �3; 7; 2 �2 �2; 3 �3; 2 �5; 11; : : :

entspricht genau der Menge der positiven ganzen Zahlen. Multiplikation ist somit in nur
einem Aspekt komplizierter als Addition: Anstatt eines Bausteins gibt es unendlich viele.

Der Ursprung der Arithmetik liegt in der Kombination von Addition und Multipli-
kation, die es erlaubt, Fragen unbegrenzter Schwierigkeit zu stellen, und deren Gesetz-
mäßigkeiten von beliebiger Tiefe scheinen. Soweit die ältesten Aufzeichnungen zurück-
reichen, gibt es Zahlenmystiker, die arithmetische Gleichungen wie

23C1 D 32; 32C42 D 52 oder 123C13 D 103C93;

finden und Zahlentheoretiker, die die Strukturen solcher Gleichungen untersuchen. Ein
Beispiel bilden die Gleichungen der Form

1C2C : : :Cm D 12C22C : : :Cn2

für positive ganze Zahlenm undn. Ausprobieren (im Zweifel mit Hilfe eines Computers)
liefert die Lösungen

mD 1 undnD 1; mD 10 undnD 5; mD 13 undnD 6; mD 645 undnD 85:

Tatsächlich sind dies bereits alle Lösungen. Der Beweis ([40]) führt allerdings über den
Rahmen dieser Zusammenfassung hinaus. Für eine populärwissenschaftliche Darstellung
siehe [14].

Die Riemannschen Vermutung

Seis größer als1, dann nähern sich die unendliche Summe

1

1s
C

1

2s
C

1

3s
C �� � C

1

ns
C �� �

(n durchläuft hier alle positiven ganzen Zahlen) und das unendliche Produkt

1

1� 1
2s

�
1

1� 1
3s

�
1

1� 1
5s

� � � � �
1

1� 1
ps

� � � �

(p durchläuft hier alle Primzahlen) einem wohlbestimmten Wert an in dem Sinne, wie sich
0;99999: : : der Zahl1 annähert, und dieser Wert ist für beide Ausdrücke derselbe. Dies
folgt im Wesentlichen aus der eindeutigen Primfaktorzerlegung.

Die Riemannsche Zetafunktion� ist eine „meromorphe“ Funktion von den „kom-
plexen“ Zahlen in die komplexen Zahlen, welche für komplexe Zahlens, deren „Realteil“
größer als1 ist, den soeben beschriebenen Wert annimmt. Die sogenannten trivialen Null-
stellen sind Nullstellen von� in allen geraden negativen ganzen Zahlen. Die Riemannsche
Vermutung besagt, daß alle weiteren Nullstellen Realteil1

2
haben.
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Die Riemannsche Vermutung wurde von Bernard Riemann ([54]) im Jahre 1859 for-
muliert. Ihre Gültigkeit würde die erstaunlich regelmäßige Verteilung von Primzahlen in
den natürlichen Zahlen erklären (siehe Abschnitt 6.5). Sie hat zahlreiche Umformulierun-
gen, Folgerungen und implizierende Bedingungen in verschiedensten Gebieten der Math-
ematik gefunden, ihre Gültigkeit ist aber bis heute eine offene Frage.

Die ganzen Zahlen bilden nicht den einzigen Zahlenbereich, der für die Zahlentheorie
interessant ist, sondern es gibt eine Vielfalt anderer Zahlenbereiche, die mit einer Addi-
tion und einer Multiplikation ausgestattet sind und deren arithmetische Eigenschaften eine
weitreichende Ähnlichkeit mit denen der ganzen Zahlen aufweisen. So lassen sich auch
für gewisse Zahlenbereiche Zetafunktionen definieren und eine Riemannsche Vermutung
formulieren.

So tief die Gültigkeit der Riemannschen Vermutung mit der Arithmetik des Zahlenbe-
reichs verwoben ist, so vielfältig sind die Herangehensweisen an einen Beweis. Wie oben
erwähnt, hatte allerdings noch keine Methode Erfolg im Fall der Riemannschen Zetafunk-
tion �. In dieser Doktorarbeit wird ein Ansatz verfolgt, der Ende der siebziger Jahre durch
Don Zagier formuliert wurde. Im Falle einiger Zahlenbereiche, für die die Riemannsche
Vermutung schon gezeigt wurde, gelingt ein neuer Beweis.

Graphen

Die mathematischen Konzepte und Methoden, die sich um arithmetische Fragen ranken,
sind oft von hoher Abstraktheit, da sich gewisse Gesetze der Arithmetik einer naiven
Betrachtungsweise verschließen. Zur besseren Handhabung abstrakter Begriffe werden
ihnen oft einfachere Objekte zugeordnet, die sich darauf beschränken, die entscheidenden
Eigenschaften für den jeweiligen Zweck widerzuspiegeln. In einigen Situationen reicht es
aus, dem abstrakten Begriff eine Zahl oder eine Reihe von Zahlen zuzuordnen, in anderen
ist es nötig, mehr Charakteristika zu wahren.

Beliebte Kandidaten mit mehr Möglichkeiten sind sogenannte Graphen. Ein Graph
besteht im Wesentlichen aus einer Menge von Punkten, sogenannten Knoten, und einer
Menge von Verbindungslinien zwischen diesen Knoten, sogenannten Kanten. Ein Grund
für ihre Beliebtheit ist die Möglichkeit, sie auf ein Stück Papier zu zeichnen.

Je nach Bedarf werden die Knoten und Kanten mit gewissen Dekorationen versehen:
Sie werden eingefärbt, gerichtet und gewichtet oder es werden ihnen selbst wieder ab-
strakte Objekte zugeordnet. In der Literatur finden sich Cayleygraphen, Kinderzeichnun-
gen, Feynmangraphen und Bruhat-Tits-Bäume als Vereinfachung komplizierter Objekte.

In Kapitel 4 dieser Arbeit wird der Graph eines Heckeoperators eingeführt. Dieser
ist im „unverzweigten“ Fall, der in dieser Arbeit fast ausschließlich betrachtet wird, ein
Graph, dessen Kanten zwei Zahlen dekorieren, eine an jedem Ende der Kante. Der ein-
fachste Graph eines Heckeoperatoren, der vorkommt, sieht wie folgt aus:

1 1 13 2 2 2

Der Graph hat unendlich viele Knoten und Kanten, setzt sich aber nach rechts vollkommen
regelmäßig fort. Die Zahlen kodieren die Wirkung des betrachteten Heckeoperators auf
eine Weise, die im folgenden Abschnitt demonstriert werden soll.
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Beweis der Riemannschen Vermutung in einem Beispiel

In diesem Abschnitt wird der Beweis der Riemannschen Vermutung nach der in dieser Ar-
beit benutzten Methode am Beispiel des Zahlenbereichs „F2Œt �“ demonstriert. Der Graph
eines gewissen Heckeoperators, der mitˆ bezeichnet werden soll, ist der im vorherigen
Abschnitt vorgestellte. Der Handhabbarkeit halber indizieren wir die Knoten mitc0; c1; c2
und so weiter:

1 1 1

c0

3 2 2 2

c1 c2 c3

Es werden ein paar mathematische Begriffe benötigt, die auf möglichst einfache Weise
eingeführt werden.

Eine automorphe Formist eine Vorschriftf , die jedem Knotenci des Graphen eine
komplexe Zahlf .ci / zuordnet und die eine gewisse Wachstumsbedingung erfüllt, die je-
doch für den weiteren Beweis ohne Bedeutung ist und auf die deswegen nicht weiter einge-
gangen werden soll.

Der Heckeoperator̂ bildet eine automorphe Formf auf die automorphe Formf �

ab, die sich dadurch definiert, daß

f �.c0/ D 3 �f .c1/; (1)

f �.c1/ D 1 �f .c2/C2 �f .c0/; (2)

f �.c2/ D 1 �f .c3/C2 �f .c1/ und so weiter (3)

gilt. Genau diese Gleichungen werden durch die Kanten und ihre Zahlen im obigen
Graphen dargestellt.

Don Zagier definierte in einer Arbeit von 1979, unter welchen Bedingungen eine au-
tomorphe Formtoroidal heißt. Für diesen Beweis ist interessant, daß eine toroidale auto-
morphe Formf zwei Eigenschaften hat:f .c0/D 0, undf � ist toroidal.

Der Zusammenhang mit der Zetafunktion „�F2Œt�“ von F2Œt � wird durch eine Formel
von Erich Hecke von 1959 gegeben. Diese Formel impliziert, daß es zu jeder Nullstelle
von �F2Œt� eine toroidale automorphe Formf gibt, die mindestens einem Knotencn eine
Zahlf .cn/ ungleich0 zuordnet.

Die folgende Überlegung zeigt, daß es keine solche toroidale automorphe Form geben
kann. Daraus folgt, daß�F2Œt� keine Nullstelle haben kann und somit die Riemannsche
Vermutung fürF2Œt � gilt.

Sei alsof eine toroidale automorphe Form. Dann istf .c0/D 0, undf �, definiert wie
oben, ist toroidal. Folglich gilt auchf �.c0/D 0 und – zufolge Gleichung (1) –f .c1/D 0.

Zusammenfassend wurde im letzten Absatz für eine toroidale automorphe Formf

bewiesen, daß nebenf .c0/D 0 auchf .c1/D 0 gilt. Da auchf � toroidal ist, gilt ebenso
f �.c1/D 0. Aus Gleichung (2) folgt nun, daßf .c2/D 0 ist.

Das Argument aus dem vorherigen Absatz läßt sich beliebig oft wiederholen, und
somit gilt für jede positive Zahln, daßf .cn/D 0. Damit ist die Riemansche Vermutung
für F2Œt � bewiesen.
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