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Applications

> Riemann hypothesis
> K -theory spectra > ABC-conjecture
> Derived FF1-geometry | Homotopy theory > Reciprocity law

> lwasawa theory

Geometry 4@metry Arithmetic

> A-geometry - -

> log-geometry Combinatorics > Chevalley groups

> Arakelov geometry > Buildings

> Tropical geometry > Quiver Grassmannians
> Rigid analytic geometry > Moduli of quiver

> Motives representations
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Blueprints

Definition
A blueprint is a commutative monoid A together with a pre-addition
% = {Y aj = Y bj|ai, bj € A}, which is a set that satisfies!

1. Z is an equivalence relation on N[A] = {Y a;|a; € A}, and

2. Z is additive and multiplicative, i.e. if Y a; =) b; and
Yck=Yd, then Yai+Yck =Y bj+Y d and Yajck =) bjd.

Remark
Axioms 1 and 2 are equivalent to the existence of the quotient

Bt =NJ[A]/Z as a semiring.

We write B=A//%, and a € B for a € A.
Given a set S ={Y a; =Y b;}, we denote the smallest pre-addition
containing S by #Z = (S).

1Sometimes a blueprint is assumed to satisfy additional axioms. For the sake
of a simplified presentation, we allow ourselves to be slightlysunprecise here.



Examples

Monoids:

A commutative monoid A defines the blueprint B = A//(0).
Semirings:

A commutative semiring R defines the blueprint B = R*® /% where
R* is the underlying monoid of R and

X = {Za,- Eij|Za,- :ij in R}.

Universal ring B%' :

Given a blueprint B = A//Z%, we can define the universal ring
By = Z[A] / { Za;—ij ‘ Za;Eij in B }.

We obtain a commutative diagram

A AJO
Monoids A Blueprints

Rings




Examples

Special linear group:
Define the blueprint

F1[5L2] = Fl[Tl,Tz,T3,T4]//<T1T4E T2T3—|—1>
where
Fl[Tl,TQ,T3,T4] = {7-1'717-2!727-3!737-:4’”[20}

is the monoid of all monomials in the T;.

Then F1[SL2]; = Z[SL,] is the coordinate ring of the Chevalley
group scheme SLj 7.



Blue schemes

There are straight forward generalizations of the following notions
from rings and monoids to blueprints:

v

prime ideals

localizations

v

v

the spectrum of a blueprint

v

locally blueprinted spaces

blue schemes

v

The category of blue schemes contains usual schemes, F1-schemes
(after Deitmar) and objects like SLp r, = SpecF1[SL>] or semiring
schemes.



SpecZ

We can define the “compactification” SpecZ of SpecZ as the
following locally blueprinted space (X, Ox).

The points p € X correspond to the places | |p of Q (if p is a finite
prime or o) and to the discrete norm | |, (if p=0). The points

p > 0 are closed, and 0 is the generic point of X. For a non-empty
open subset U of X, we define

Ox(U) = { Ze@' ‘%‘pglforall peU } J (1+(~1)=0).
Theorem (L.)

The arithmetic line SpecZ is 1-dimensional, while the arithmetic
surface SpecZ ®p, SpecZ is 2-dimensional.




K-theory

There is a straight forward definition of a vector bundle over a blue
scheme X as a locally free sheaf. The notion of short exact
sequences turns the category Bun X into a quasi-exact category.

Theorem (Chu-L.—Santhanam, 2012)

The associated spectrum 2 (X) = Q|Se Bun(X)| is a symmetric
ring spectrum.

The K-theory of X is defined as K;(X) = ' (.2 (X)).
Theorem (Folklore, Deitmar, Chu—L.-Santhanam)

The symmetric ring spectrum ¢ (F1) is weakly homotopy
equivalent to the sphere spectrum S°. This induces a ring
isomorphism K, (F1) ~ 7$t(SP).



The Tits category

One can endow blue schemes with the class of Tits morphisms,
which defines the Tits category Sch#. It comes together with
certain base extensions

SchQ SchF
Sets Schz troplcal geometry
()i -
SchN T |dempotent analysis
SCh7 totaI positivity

where # : Sch 7 — Sets is called the Weyl extension.

All base extensions send group objects (resp. monoids) to group
objects (resp. monoids).



Tits-Weyl models

Definition
Let ¢4 be a Chevalley group scheme with Weyl group W. A
Tits-Weyl model of & is a monoid G in Sch 4 such that

1. GZ+ is isomorphic to ¢ as a group scheme,
2. #(G) is isomorphic to W as a group, and

3. a certain compatibility condition is satisfied.

Theorem (L., 2012)

Let 4 be one of the following:
» GL(n), SL(n), Sp(2n), SO(2n+1), SO(2n),
» an adjoint Chevalley group scheme, or

> a split Levi subgroup of one of the above.
Then 9 has a Tits-Weyl model.



Total positivity

For all I,J C {1,...,n} with #/ = #J, we can consider the minor
A y(Ty) = det(Tyliel,jed),

as an element of Z[SL,] = Z[Tjj|i,j = 1,...,n]/(det(T;) — 1).
Since the set of all minors generate Z[SL,], we have

ZSL,] = Z[Ay411,J C{1,...,n}] / (relations between the A, ;).
These relations define a pre-addition % on the monoid F1[A, /],
and thus a blueprint 1 [SL,] =F1[A} 4]/ Z.

Theorem (Lépez Pefia—L.—Reineke, work in progress)

The blue scheme SL,, r, = SpecF1[SL,] has the unique structure of
a Tits-Weyl model. It satisfies that SL,r,(R>0) is the semigroup of
all totally nonnegative matrices (in the sense of Fomin-Zelevinsky).



Quiver Grassmannians

f;
kd1£>kd2f:ﬁ>>kd3 M
vy
R 1—>2—=3
v

Let k be a ring. A quiver is a finite directed graph Q. A quiver
representation M over k consists of a free k-module k% for every
vertex i of Q and a linear map f, : k% — k9% for every arrow
a:i—jin Q. Let d =(d;)jcq be the dimension vector.

For e = (ei)icq with 0 < & < d;, we define the quiver Grassmannian
Gre(M,k) = { subrepresentations NC M | dimN =e },

which turns out to be the set of k-rational points of a projective

k-scheme Gre(M)g.

Theorem (Reineke, 2012)

Every projective variety over k can be represented as a quiver
Grassmannian.



[F1-points of quiver Grassmannians

Let k = Z. Denote the standard basis vectors of Z% by & r. The
set *Gre(M,F1)* of “IFi-rational points” of Gre(M)z is the set of
all subrepresentations N C M of dimension dim/N = e such that

1. N; is spanned by {e; .} N N; for every i € Q, and
2. fy(eir) €{es}U{0} forall «:i—j and e, € N;.

Theorem (L.)
There is a canonical blue scheme Gre(M)g, of finite type over I
such that Gre(M)z = (GrQ(M)FI)Z. There is a canonical inclusion

v *Gre(M,F1)*  —  #(Gre(M)r,),

which is a bijection if #f,;(ejs) <1 for all a.:i— j and ej s € N;.
If furthermore Q is acyclic, then the Euler characteristic of
Gre(M,C) equals ## (Gre(M)r,) (by a result of Cerulli-Irelli).



