
Tits’s dream: buildings over F1
and combinatorial flag varieties

Oliver Lorscheid

Based on joint works with
Matthew Baker, Manoel Jarra and Koen Thas



Motivation



Jacques Tits, 1956
The Coxeter complex Cn of Sn behaves like the limit q→ 1 of the
building Bn(Fq) of flags of linear subspaces of Fnq .
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q→ 1

#{b/w vertices} = q2 + q1 + q0
q→1
−→ 12 + 11 + 10 = #{b/w vertices}

valency = q1 + q0 −→ 11 + 10 = valency
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The limit q→ 1 extends to the symmetry groups
(in terms of their invariants).



Borovik, Gelfand and White, 2003

The Coxeter complex has a relatively poor structure. In
many aspects, combinatorial flag varieties are more suit-
able candidates for the role of a “universal” combinatorial
geometry over the field of 1 element.

The combinatorial flag variety ΩSn is the simplicial complex
whose simplices consist of flag matroids on {1, . . . , n}.

M1 a matroid of rank 1 on {1, 2, 3}

(M1,M2) a flag matroid on {1, 2, 3}

M2 a matroid of rank 2 on {1, 2, 3}

Combinatorial flag variety ΩS3 for S3



Maps between the simplicial complexes
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I. Bands



Bands
A ring is a commutative semigroup (R, ·) with constants 0, 1 and
−1, together with an addition + : R × R→ R such that...

A band is a commutative semigroup (B, ·) with constants 0, 1
and −1, together with a set NB = {

∑
ai | a1, . . . , an ∈ B} of zero

sums such that for all a, b ∈ B:
1. 0 · a = 0 and 1 · a = a; (constants)
2. 0 ∈ NB, B ·NB = NB, NB +NB = NB; (ideal property)
3. a + b ∈ NB if and only if b = −a := (−1) · a. (inverses)

A band morphism is multiplicative map B1 → B2 that preserves
the constants and zero sums. This defines the category Bands.

Example: A ring R is a band with

NR = {
∑

ai |
∑

ai = 0 as sum in R}.



Bands
A ring is a commutative semigroup (R, ·) with constants 0, 1 and
−1, together with an addition + : R × R→ R such that...

A band is a commutative semigroup (B, ·) with constants 0, 1
and −1, together with a set NB = {

∑
ai | a1, . . . , an ∈ B} of zero

sums such that for all a, b ∈ B:
1. 0 · a = 0 and 1 · a = a; (constants)
2. 0 ∈ NB, B ·NB = NB, NB +NB = NB; (ideal property)
3. a + b ∈ NB if and only if b = −a := (−1) · a. (inverses)

Other examples:
▶ The Krasner hyperfield K = {0, 1 = −1} with

NK = {0, 1 + 1, 1 + 1 + 1, . . . }.

▶ The regular partial field F±1 = {0, 1, −1} with (initial)

NF±1 = {0, 1 − 1, 1 − 1 + 1 − 1, 1 − 1 + · · · + 1 − 1, . . . }.



Band schemes

An affine band scheme is a representable functor
Hom(C,−) : Bands→ Sets.

Example: The affine n-space An : Bands→ Sets is defined as
An(B) = Bn. It is an affine band scheme, represented by the free
algebra C = F±1 [T1, . . . ,Tn] over the regular partial field F±1 .

A band scheme is a functor X : Bands→ Sets that has an open
cover by affine band schemes.

Example: The projective n-space Pn : Bands→ Sets is defined as

Pn(B) = {(a0, . . . , an) ∈ Bn+1 | ai ∈ B× for some i} / B×.

A morphism of band schemes is a morphism of functors.



II. Flags



Grassmannians

Let 0 ≤ r ≤ n and E = {1, . . . , n}. Let
(E
r

)
denote the collection of

r-subsets I of E.

The Grassmannian Gr(r, n) : Bands→ Sets sends a band B to
the subset

Gr(r, n)(B) of P(
n
r)−1(B)

that consists of all [∆I]I∈(Er) that satisfy the Plücker relations∑
j∈J−I

(−1)ϵ(I,j) ∆I∪{j} ∆J−{j} ∈ NB

for all I, J ⊂ E with #I = r − 1, #J = r + 1 and

ϵ(I, j) = #
{
i ∈ I
∣∣∣ i < j

}
.



Flag varieties

Let 0 < r1 < · · · < rs < n and r = (r1, . . . , rs).

The flag variety Fl(r, n) : Bands→ Sets sends a band B to the
subset

Fl(r, n)(B) of
s∏
i=1

Gr(ri, n)(B)

that consists of all [∆i,I]I∈(Eri) that satisfy the incidence relations∑
j∈J−I

(−1)ϵ(I,j) ∆k,I∪{j} ∆l,J−{j} ∈ NB

for all 1 ≤ k ≤ l ≤ s, I, J ⊂ E with #I = rk − 1, #J = rl + 1 and

ϵ(I, j) = #
{
i ∈ I
∣∣∣ i < j

}
.



Rational point sets

For a field K, we recover the usual bijections

Gr(r, n)(K) −→
{
linear subspaces V of Kn of dimension r

}
and

Fl(r, n)(K) −→
{ flags V1 ⊂ · · · ⊂ Vs of linear subspaces

of Kn of dimensions dimVi = ri

}
.



Rational point sets

Let K = {0, 1} with NK = {n.1 | n , 1} be the Krasner hyperfield.

Theorem (Baker-L ’21)
The map

Gr(r, n)(K) −→
{
matroids M of rank rkM = r on E

}
[∆I] 7−→ B(M) =

{
I ∈
(E
r

) ∣∣∣∆I , 0
}

(bases)

is a bijection.

Theorem (Jarra-L ’24)
The above map extends to a bijection

Fl(r, n)(K) −→
{ flags (M1, . . . ,Ms) of matroids

of ranks rkMi = ri on E

}
.



Simplicial band schemes

Omitting coefficients from
r = (r1, . . . , rs) defines a
simplicial band scheme Bn.

For example B4:

Fl(1, 2, 3; 4)

Fl(1, 2; 4) Fl(1, 3; 4)

Fl(2, 3; 4)

Gr(1, 4)

Gr(2, 4) Gr(3, 4)



Simplicial complexes revisited

induced
by F2 → K

inclusion

Spherical building B3(F2)

C3 = {closed points of B3(K)}

Combinatorial flag variety ΩS3 = B3(K)



III. Crowds



Crowds

A crowd is a set G together with an identity 1 and a crowd law,
which is a subset R ⊂ G3, such that for all a, b, c ∈ G
1. (a, 1, 1) ∈ R if and only if a = 1;
2. (b, a, 1) ∈ R if (a, b, 1) ∈ R;
3. (c, a, b) ∈ R if (a, b, c) ∈ R.

A crowd morphism is a map f : G1 → G2 such that f (1) = 1 and(
f (a), f (b), f (c)

)
∈ R2 for all (a, b, c) ∈ R1. This defines the category

Crowds.

Example
A group G with identity 1 is a crowd with respect to the crowd
law

R =
{
(a, b, c) ∈ G3

∣∣∣ abc = 1
}
.

This defines a fully faithful embedding Groups→ Crowds.



Algebraic crowds

The category of crowds comes with two functors

FG : Crowds→ Sets and FR : Crowds→ Sets,

which send a crowd G to its underlying set FG(G) = G and to its
crowd law FR(G) = R, respectively.

An algebraic crowd is a functor G : Bands→ Crowds for which
both FG ◦ G : Bands→ Sets and FR ◦ G : Bands→ Sets are band
schemes.



The special linear crowd

The algebraic crowd SL2 : Bands→ Crowds is defined as

SL2(B) =
{ [ a b

c d
]
∈ B4

∣∣∣ ad − bc − 1 ∈ NB
}

with identity 1 =
[ 1 0
0 1
]
and crowd law R that consists of all

(a(1), a(2), a(3)) ∈ SL2(B)3 such that
n∑

k,l=1
a(σ(1))
i,k · a(σ(2))

k,l · a(σ(3))
l,j − 1i,j ∈ NB

for every i, j ∈ {1, 2} and σ ∈ A3.
▶ For a ring R, the crowd SL2(R) is the usual special linear

group of 2 × 2-matrices over R.
▶ SL2(F±1 ) is the subcrowd of SL2(Z) that consists of all

matrices with coefficients in F±1 = {0, 1,−1}.
▶ SLn : Bands→ Crowds is defined analogous.



K-points of the special linear crowd

SL2(K) consists of the seven elements[ 1 0
0 1
]
,
[ 0 1
1 0
]
,
[ 1 1
0 1
]
,
[ 1 0
1 1
]
,
[ 1 1
1 0
]
,
[ 0 1
1 1
]
,
[ 1 1
1 1
]
.

Its crowd law is multi-valued: it contains triples (a, b, c) and
(a, b, d) with c , d, such as( [ 1 1

1 1
]
,
[ 1 1
1 1
]
,
[ 1 1
1 1
] )

and
( [ 1 1

1 1
]
,
[ 1 1
1 1
]
,
[ 1 0
0 1
] )
.

In particular, SL2(K) is not a group.

Finding the expected F1-points:
The Weyl group “ SLn(F1)” = Sn of SLn appears naturally as the
subcrowd of permutation matrices in SLn(K).



Crowd activity

Observation: A group action G × X → X is determined by its
graph T in G × X × X.

A crowd activity of an algebraic crowd G on a band schemes X
is a subscheme T of G × X × X.

There is a natural crowd activity of SLn on Gr(r, n) and Fl(r, n),
which extends to an activity of SLn on Bn.

▶ Taking Fq-rational points recovers the usual group action of
SLn(Fq) on the building Bn(Fq).

▶ Taking K-rational points exhibits a crowd activity of SLn(K)
on the combinatorial flag variety ΩSn = Bn(K).

▶ The respective subspaces of closed points recovers the action
of Sn on its Coxeter complex Cn.



Simplicial complexes and their symmetries

induced
by F2 → K

inclusion

SL3(F2)

Spherical building B3(F2)

S3

closed points of B3(K)

SL3(K)

Combinatorial flag variety B3(K)
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