Tits's dream: buildings over \mathbb{F}_1 and combinatorial flag varieties

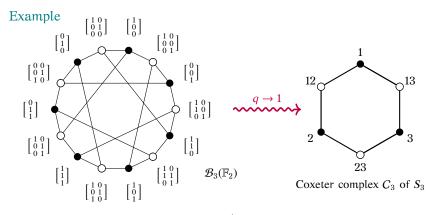
Oliver Lorscheid

Based on joint works with Matthew Baker, Manoel Jarra and Koen Thas

Motivation

Jacques Tits, 1956

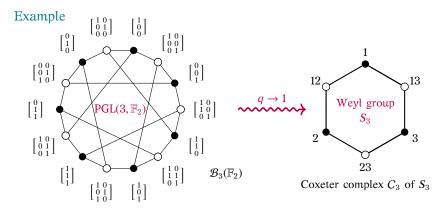
The Coxeter complex C_n of S_n behaves like the limit $q \to 1$ of the building $\mathcal{B}_n(\mathbb{F}_q)$ of flags of linear subspaces of \mathbb{F}_q^n .



 $#\{b/w \text{ vertices}\} = q^2 + q^1 + q^0 \xrightarrow{q \to 1} 1^2 + 1^1 + 1^0 = \#\{b/w \text{ vertices}\}$ $valency = q^1 + q^0 \longrightarrow 1^1 + 1^0 = valency$

Jacques Tits, 1956

The Coxeter complex C_n of S_n behaves like the limit $q \to 1$ of the building $\mathcal{B}_n(\mathbb{F}_q)$ of flags of linear subspaces of \mathbb{F}_q^n .



The limit $q \rightarrow 1$ extends to the symmetry groups (in terms of their invariants).

Borovik, Gelfand and White, 2003

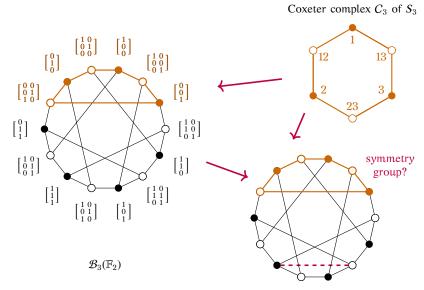
The Coxeter complex has a relatively poor structure. In many aspects, combinatorial flag varieties are more suitable candidates for the role of a "universal" combinatorial geometry over the field of 1 element.

The combinatorial flag variety Ω_{S_n} is the simplicial complex whose simplices consist of flag matroids on $\{1, \ldots, n\}$.



Combinatorial flag variety Ω_{S_3} for S_3

Maps between the simplicial complexes



Combinatorial flag variety Ω_{S_3} for S_3

I. Bands

Bands

A ring is a commutative semigroup (R, \cdot) with constants 0, 1 and -1, together with an addition $+: R \times R \rightarrow R$ such that...

A **band** is a commutative semigroup (B, \cdot) with constants 0, 1 and -1, together with a set $N_B = \{\sum a_i \mid a_1, \dots, a_n \in B\}$ of *zero sums* such that for all $a, b \in B$:

1.
$$0 \cdot a = 0$$
 and $1 \cdot a = a;$ (constants)2. $0 \in N_B, \quad B \cdot N_B = N_B, \quad N_B + N_B = N_B;$ (ideal property)3. $a + b \in N_B$ if and only if $b = -a := (-1) \cdot a.$ (inverses)

A **band morphism** is multiplicative map $B_1 \rightarrow B_2$ that preserves the constants and zero sums. This defines the category Bands.

Example: A ring R is a band with

$$N_R = \{\sum a_i \mid \sum a_i = 0 \text{ as sum in } R\}.$$

Bands

A ring is a commutative semigroup (R, \cdot) with constants 0, 1 and -1, together with an addition $+: R \times R \to R$ such that...

A **band** is a commutative semigroup (B, \cdot) with constants 0, 1 and -1, together with a set $N_B = \{\sum a_i \mid a_1, \dots, a_n \in B\}$ of *zero sums* such that for all $a, b \in B$:

1.
$$0 \cdot a = 0$$
 and $1 \cdot a = a;$ (constants)2. $0 \in N_B, \quad B \cdot N_B = N_B, \quad N_B + N_B = N_B;$ (ideal property)3. $a + b \in N_B$ if and only if $b = -a := (-1) \cdot a.$ (inverses)

Other examples:

The **Krasner hyperfield** $\mathbb{K} = \{0, 1 = -1\}$ with

$$N_{\mathbb{K}} = \{0, 1+1, 1+1+1, \ldots\}.$$

► The regular partial field $\mathbb{F}_1^{\pm} = \{0, 1, -1\}$ with *(initial)*

$$N_{\mathbb{F}_1^{\pm}} = \{0, 1-1, 1-1+1-1, 1-1+\dots\}.$$

Band schemes

An **affine band scheme** is a representable functor Hom(C, -): Bands \rightarrow Sets.

Example: The affine *n*-space \mathbb{A}^n : Bands \rightarrow Sets is defined as $\mathbb{A}^n(B) = B^n$. It is an affine band scheme, represented by the *free algebra* $C = \mathbb{F}_1^{\pm}[T_1, \ldots, T_n]$ over the regular partial field \mathbb{F}_1^{\pm} .

A **band scheme** is a functor X: Bands \rightarrow Sets that has an *open cover* by affine band schemes.

Example: The **projective** *n*-space \mathbb{P}^n : Bands \rightarrow Sets is defined as

$$\mathbb{P}^{n}(B) = \{(a_0, \dots, a_n) \in B^{n+1} \mid a_i \in B^{\times} \text{ for some } i\} / B^{\times}.$$

A morphism of band schemes is a morphism of functors.

II. Flags

Grassmannians

Let $0 \le r \le n$ and $E = \{1, ..., n\}$. Let $\binom{E}{r}$ denote the collection of *r*-subsets *I* of *E*.

The **Grassmannian** Gr(r, n): Bands \rightarrow Sets sends a band B to the subset

$$\operatorname{Gr}(r,n)(B)$$
 of $\mathbb{P}^{\binom{n}{r}-1}(B)$

that consists of all $[\Delta_I]_{I \in \binom{E}{r}}$ that satisfy the *Plücker relations*

$$\sum_{j\in J-I} (-1)^{\epsilon(I,j)} \Delta_{I\cup\{j\}} \Delta_{J-\{j\}} \in N_B$$

for all $I, J \subset E$ with #I = r - 1, #J = r + 1 and

$$\epsilon(I,j) = \#\{i \in I \mid i < j\}.$$

Flag varieties

Let $0 < r_1 < \cdots < r_s < n$ and $\mathbf{r} = (r_1, \dots, r_s)$.

The flag variety $Fl(\mathbf{r}, n)$: Bands \rightarrow Sets sends a band B to the subset

$$\operatorname{Fl}(\mathbf{r}, n)(B)$$
 of $\prod_{i=1}^{s} \operatorname{Gr}(r_i, n)(B)$

that consists of all $[\Delta_{i,I}]_{I \in {E \choose r}}$ that satisfy the *incidence relations*

$$\sum_{j\in J-I} (-1)^{\epsilon(I,j)} \Delta_{k,I\cup\{j\}} \Delta_{l,J-\{j\}} \in N_B$$

for all $1 \le k \le l \le s$, $I, J \subset E$ with $\#I = r_k - 1$, $\#J = r_l + 1$ and

$$\epsilon(I,j) = \#\{i \in I \mid i < j\}.$$

For a field K, we recover the usual bijections

$$\operatorname{Gr}(r,n)(K) \longrightarrow \left\{ \text{linear subspaces } V \text{ of } K^n \text{ of dimension } r \right\}$$

and

$$\operatorname{Fl}(\mathbf{r}, n)(K) \longrightarrow \left\{ \begin{array}{c} \operatorname{flags} V_1 \subset \cdots \subset V_s \text{ of linear subspaces} \\ \operatorname{of} K^n \text{ of dimensions dim } V_i = r_i \end{array} \right\}.$$

Rational point sets

Let $\mathbb{K} = \{0, 1\}$ with $N_{\mathbb{K}} = \{n.1 \mid n \neq 1\}$ be the Krasner hyperfield. Theorem (Baker-L '21) The map

$$\begin{aligned} \operatorname{Gr}(r,n)(\mathbb{K}) &\longrightarrow \left\{ \text{matroids } M \text{ of rank } \operatorname{rk} M = r \text{ on } E \right\} \\ \begin{bmatrix} \Delta_I \end{bmatrix} &\longmapsto \mathcal{B}(M) = \left\{ I \in {E \choose r} \middle| \Delta_I \neq 0 \right\} \quad (\text{bases}) \end{aligned}$$

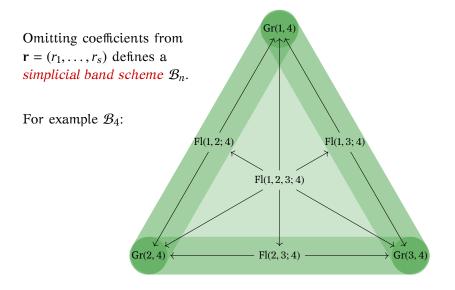
is a bijection.

Theorem (Jarra-L '24)

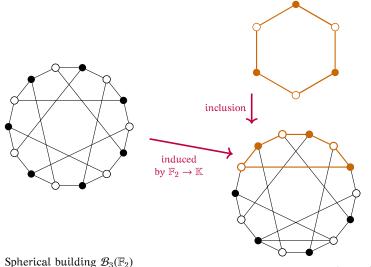
The above map extends to a bijection

$$Fl(\mathbf{r}, n)(\mathbb{K}) \longrightarrow \left\{ \begin{array}{c} flags \ (M_1, \dots, M_s) \ of \ matroids \\ of \ ranks \ rk \ M_i = r_i \ on \ E \end{array} \right\}$$

Simplicial band schemes



Simplicial complexes revisited $C_3 = \{\text{closed points of } \mathcal{B}_3(\mathbb{K})\}$



Combinatorial flag variety $\Omega_{S_3} = \mathcal{B}_3(\mathbb{K})$

III. Crowds

Crowds

A **crowd** is a set *G* together with an *identity* 1 and a **crowd law**, which is a subset $R \subset G^3$, such that for all $a, b, c \in G$

1.
$$(a, 1, 1) \in R$$
 if and only if $a = 1$;

2.
$$(b, a, 1) \in R$$
 if $(a, b, 1) \in R$;

3. $(c, a, b) \in R$ if $(a, b, c) \in R$.

A crowd morphism is a map $f : G_1 \to G_2$ such that f(1) = 1 and $(f(a), f(b), f(c)) \in R_2$ for all $(a, b, c) \in R_1$. This defines the category Crowds.

Example

A group G with identity 1 is a crowd with respect to the crowd law

$$R = \{(a, b, c) \in G^3 \mid abc = 1\}.$$

This defines a fully faithful embedding Groups \rightarrow Crowds.

The category of crowds comes with two functors

$$\mathcal{F}_G$$
: Crowds \rightarrow Sets and \mathcal{F}_R : Crowds \rightarrow Sets,

which send a crowd *G* to its underlying set $\mathcal{F}_G(G) = G$ and to its crowd law $\mathcal{F}_R(G) = R$, respectively.

An **algebraic crowd** is a functor \mathcal{G} : Bands \rightarrow Crowds for which both $\mathcal{F}_G \circ \mathcal{G}$: Bands \rightarrow Sets and $\mathcal{F}_R \circ \mathcal{G}$: Bands \rightarrow Sets are band schemes.

The special linear crowd

The algebraic crowd SL_2 : Bands \rightarrow Crowds is defined as

$$SL_2(B) = \left\{ \left[\begin{array}{c} a & b \\ c & d \end{array} \right] \in B^4 \mid ad - bc - 1 \in N_B \right\}$$

with identity $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and crowd law *R* that consists of all $(a^{(1)}, a^{(2)}, a^{(3)}) \in SL_2(B)^3$ such that

$$\sum_{k,l=1}^{n} a_{i,k}^{(\sigma(1))} \cdot a_{k,l}^{(\sigma(2))} \cdot a_{l,j}^{(\sigma(3))} - \mathbf{1}_{i,j} \in N_B$$

for every $i, j \in \{1, 2\}$ and $\sigma \in A_3$.

- ▶ For a ring *R*, the crowd SL₂(*R*) is the usual special linear group of 2 × 2-matrices over *R*.
- SL₂(𝔽₁[±]) is the *subcrowd* of SL₂(ℤ) that consists of all matrices with coefficients in 𝔽₁[±] = {0, 1, −1}.
- ▶ SL_n : Bands → Crowds is defined analogous.

K-points of the special linear crowd

 $SL_2(\mathbb{K})$ consists of the seven elements

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Its crowd law is *multi-valued*: it contains triples (a, b, c) and (a, b, d) with $c \neq d$, such as

 $\left(\begin{bmatrix}11\\11\end{bmatrix},\begin{bmatrix}11\\11\end{bmatrix},\begin{bmatrix}11\\11\end{bmatrix}\right)$ and $\left(\begin{bmatrix}11\\11\end{bmatrix},\begin{bmatrix}11\\11\end{bmatrix},\begin{bmatrix}10\\01\end{bmatrix}\right)$.

In particular, $SL_2(\mathbb{K})$ is *not* a group.

Finding the expected \mathbb{F}_1 -points:

The Weyl group " $SL_n(\mathbb{F}_1)$ " = S_n of SL_n appears naturally as the subcrowd of permutation matrices in $SL_n(\mathbb{K})$.

Crowd activity

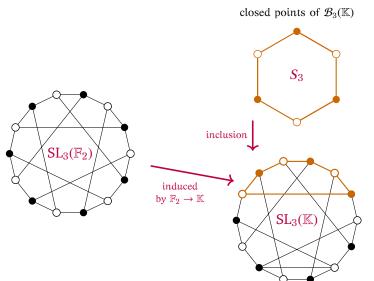
Observation: A group action $G \times X \to X$ is determined by its graph *T* in $G \times X \times X$.

A **crowd activity** of an algebraic crowd \mathcal{G} on a band schemes X is a subscheme \mathcal{T} of $\mathcal{G} \times X \times X$.

There is a natural crowd activity of SL_n on Gr(r, n) and Fl(r, n), which extends to an activity of SL_n on \mathcal{B}_n .

- ► Taking F_q-rational points recovers the usual group action of SL_n(F_q) on the building B_n(F_q).
- ► Taking \mathbb{K} -rational points exhibits a crowd activity of $SL_n(\mathbb{K})$ on the combinatorial flag variety $\Omega_{S_n} = \mathcal{B}_n(\mathbb{K})$.
- The respective subspaces of closed points recovers the action of S_n on its Coxeter complex C_n .

Simplicial complexes and their symmetries



Spherical building $\mathcal{B}_3(\mathbb{F}_2)$

Combinatorial flag variety $\mathcal{B}_3(\mathbb{K})$