Categories of matroids and matroid bundles

Oliver Lorscheid IMPA / University of Groningen

Based on joint ideas with Matthew Baker, Manoel Jarra and Tong Jin

I. Bands (joint with Baker and Jin)

Pointed monoids

A **pointed monoid** is a commutative semigroup A with 1 and 0, i.e. $1 \cdot a = 1$ and $0 \cdot a = 0$ for all $a \in A$.

The unit group of A is

$$A^{\times} = \{a \in A \mid ab = 1 \text{ for some } b \in A\}.$$

The ambient semiring of A is

$$A^+ = \mathbb{N}[A]/\langle 0_A \sim 0_{\mathbb{N}[A]} \rangle = \{ \sum a_i \mid a_i \in A - \{0\} \}.$$

An **ideal** of A^+ is a subset I such that $0 \in I$, I + I = I and $A^+ \cdot I = I$.

Bands

A **band** is a pointed monoid *B* together with an ideal $N_B \subset B^+$ (the *nullset*) such that every $a \in B$ has a unique $-a \in B$ (its *additive inverse*) with $a + (-a) \in N_B$.

A **band morphism** is a multiplicative map $f : B \to C$ with f(0) = 0 and f(1) = 1 such that $\sum f(a_i) \in N_C$ for all $\sum a_i \in N_B$.

This defines the category Bands.

An **idyll** is a band B with $B^{\times} = B - \{0\}$.

Examples

A ring R defines the band $B = (R, \cdot)$ with nullset

$$N_B = \left\{ \sum a_i \right| \sum a_i = 0 \text{ in } R \right\}$$

If R is a field, then B is an idyll.

► Other examples of idylls:

$\mathbb{K} = \{0, 1\}$	$N_{\mathbb{K}} = \{n.1 \mid n \neq 1\}$	Krasner hyperfield
$\mathbb{S} = \{0, \pm 1\}$	$N_{\mathbb{S}} = \{n.1 + m.(-1) \mid n = m = 0 \text{ or } n \neq 0 \neq m\}$	
		sign hyperfield
$\mathbb{T}=\mathbb{R}_{\geq 0}$	$N_{\mathbb{T}} = \{\sum a_i \mid \text{maximum occurs twice}\}$	
		tropical hyperfield
$\mathbb{F}_1^{\pm} = \{0, \pm 1\}$	$N_{\mathbb{F}_1^{\pm}} = \{ n.1 + n.(-1) \mid n \ge 0 \}$	
		regular partial field

Categorical landscape

Baker-Bowler theory

towards geometry

idylls	bands
partial fields	
fields	rings
hyperfields	

II. Baker-Bowler theory

B-matroids

Let $E = \{1, ..., n\}$ and $0 \le r \le n$. Let B be an idyll.

A Grassmann-Plücker function (of rank r on E) in B is a non-trivial and alternating map $\Delta : E^r \to B$ that satisfies the Plücker relations

$$\sum_{k=0}^{r} (-1)^k \Delta(e_0, \ldots, \widehat{e_k}, \ldots, e_r) \Delta(e_k, d_2, \ldots, d_r) \in N_B$$

for all $e_0, ..., e_r, d_2, ..., d_r \in E$.

A *B*-matroid (of rank *r* on *E*) is a B^{\times} -class $M = [\Delta]$ of a Grassmann-Plücker function $\Delta : E^r \to B$.

Baker-Bowler theory

Example

 A matroid *M* of rank *r* on *E* corresponds to the K-matroid [Δ : E^r → K] with

 $\Delta(e_1,\ldots,e_r) = \begin{cases} 1 & \text{if } \{e_1,\ldots,e_r\} \text{ is a basis of } M; \\ 0 & \text{if not.} \end{cases}$

- 2. Oriented matroids correspond to S-matroids.
- 3. Valuated matroids correspond to T-matroids.

Theorem (Baker-Bowler '19)

- Cycles: $C(M) \subset B^n$, with cryptomorphic axioms
- Duality: M*
- Orthogonality: $C(M) \perp C(M^*)$
- ▶ Vectors: $\mathcal{V}(M) = C(M^*)^{\perp}$, axioms by [Anderson '19]
- Minors: $M \setminus I/J$

An idyll B is **perfect** if $\mathcal{V}(M) \perp \mathcal{V}(M^*)$ for every B-matroid M.

Example

- 1. All (partial) fields are perfect.
- 2. \mathbb{K} , \mathbb{S} and \mathbb{T} are perfect.
- 3. There are many non-perfect idylls.

III. Morphisms (joint with Baker and Jarra) \mathbb{F}_1 -linear maps and pointed *B*-matroids

Let $E_i = \{0, 1, ..., n_i\}$ for i = 1, 2. A map $f : E_1 \to E_2$ is \mathbb{F}_1 -linear if f(0) = 0 and if $\#f^{-1}(d) \le 1$ for all $d \in E_2 - \{0\}$.

The **adjoint** of f is

$$f^{\#}: E_{2} \longrightarrow E_{1}$$

$$d \longmapsto \begin{cases} e & \text{if } f^{-1}(d) = \{e\}, \\ 0 & \text{if } f^{-1}(d) = \emptyset \text{ or } d = 0. \end{cases}$$

Let *B* an idyll. A **pointed** *B*-matroid is a *B*-matroid $M = [\Delta : E^r \to B]$ for which 0 is a *loop*, i.e. $\Delta(0, e_2, ..., e_r) = 0$ for all $e_2, ..., e_r \in E$.

Morphisms over perfect idylls

Assume that *B* is perfect. Let $M_i = [\Delta_i : E_i^{r_i} \rightarrow B]$ be pointed *B*-matroids for i = 1, 2.

A morphism $M_1 \to M_2$ is a *strong* \mathbb{F}_1 -linear map $f : E_1 \to E_2$, i.e. $f^* : B^{E_2} \to B^{E_1}$ restricts to $\mathcal{V}(M_2^*) \to \mathcal{V}(M_1^*)$.

This defines the category Mat_B of pointed *B*-matroids.

Theorem

Let $f : E_1 \to E_2$ an \mathbb{F}_1 -linear map. Then the following are equivalent:

- 1. *f* defines a morphism $M_1 \rightarrow M_2$.
- 2. $f^{\#}: E_2 \to E_1$ defines a morphism $M_2^* \to M_1^*$.
- 3. $f^*(C(M_2^*)) \perp C(M_1)$.
- 4. For all $e_0, \ldots, e_{r_1} \in E_1$ and $d_2, \ldots, d_{r_2} \in E_2$,

$$\sum_{k=0}^{r_1} (-1)^k \Delta_1(e_0, \dots, \widehat{e_k}, \dots, e_{r_1}) \Delta_2(f(e_k), d_2, \dots, d_{r_2}) \in N_B.$$

Examples

Let M be a pointed B-matroid and S a pointed subset of M.

- 1. The *restriction* $M|_S \rightarrow M$ is a morphism.
- 2. The *contraction* $M \rightarrow M/S$ is a morphism.
- 3. Matroid *quotients* $M \rightarrow N$ are morphisms.
- 4. Identifying parallel elements defines a strong map $M \to N$ that is *not* \mathbb{F}_1 -linear.

Perfection

Remark

If B is not perfect, then restrictions and contractions fail to preserve vectors in general.

Let *B* be an idyll. The **perfection** of *B* is the limit $B^{\text{perf}} = \lim P$ over all morphisms $B \to P$ into perfect idylls *P*.

Theorem

- 1. B^{perf} is perfect.
- 2. The canonical morphism $\omega : B \to B^{\text{perf}}$ is a bijection.
- 3. $N_{B^{\text{perf}}} = \bigcap N_P$ as subsets of B^+ where N_P ranges over all bijective morphisms $B \to P$ into perfect idylls P.

Problem

We do not know an explicit description of $N_{B^{\text{perf}}}$.

We define the category of **preperfect** *B*-matroids as $Mat_B = Mat_{B^{perf}}$.

Remark Every *B*-matroid (in Baker-Bowler's sense) is preperfect. Both notions agree if *B* is perfect.

IV. Matroid bundles (joint with Baker)

Band schemes

An **affine band scheme** is a representable functor Hom(B, -): Bands \rightarrow Sets.

A **band scheme** is a functor X: Bands \rightarrow Sets that has an *open cover* by affine band schemes.

A morphism of band schemes is a morphism of functors.

Example

1. The **projective** *n*-space \mathbb{P}^n : Bands \rightarrow Sets is defined as

 $\mathbb{P}^{n}(B) = (B^{n+1} - \{0\}) / B^{\times} = \{[a_0 : \dots : a_n] \mid a_0, \dots, a_n \in B\}.$

2. The **Grassmannian** Gr(r, n) : Bands \rightarrow Sets is defined as

 $\operatorname{Gr}(r,n)(B) = \left\{ \left[\Delta(e_1,\ldots,e_r) \right] \middle| \operatorname{Plücker relations} \right\} \subset \mathbb{P}^{n^r-1}(B).$

The moduli space of matroids

Let X be a band scheme. A **matroid bundle** on X is an isomorphism class of a *Grassmann-Plücker function* $\Delta: E^r \to \Gamma(X, \mathcal{L})$ where \mathcal{L} is a *line bundle* on X.

Theorem

1. For every idyll *B* and *X* = Hom(*B*, –), there is a canonical bijection

 Φ_B : {*B*-matroids} \longrightarrow {matroid bundles on X}.

2. For every band scheme X, there is a canonical bijection

 $\Psi_X: \operatorname{Hom}(X,\operatorname{Gr}(r,n)) \longrightarrow \left\{ \begin{array}{c} matroid \ bundles \ on \ X \\ of \ rank \ r \ on \ \{1,\ldots,n\} \end{array} \right\}.$

The **universal family** on $\operatorname{Gr}(r,n)$ is $\mathcal{M}^{\operatorname{univ}} = \Psi_{\operatorname{Gr}(r,n)}(\operatorname{id}_{\operatorname{Gr}(r,n)})$. The matroid bundle $\Psi_X(\varphi: X \to \operatorname{Gr}(r,n))$ is the *pullback* $\varphi^* \mathcal{M}^{\operatorname{univ}}$.

Morphisms

Step 1: Explicit construction of a coherent subsheaf $C^{\text{univ}} = C_{\mathcal{M}^{\text{univ}}}$ (the *universal cycle bundle*) of $O^n_{Gr(r,n)}$.

Step 2: For a matroid bundle $\mathcal{M} = \varphi^* \mathcal{M}^{\text{univ}}$ on a band scheme X, we define its **cycle bundle** as $C_{\mathcal{M}} = \varphi^*_{\mathcal{M}} C^{\text{univ}}$.

Remark: This recovers Baker-Bowler's cycles of a B-matroid.

Step 3: The vector bundle of \mathcal{M} is the coherent subsheaf $\mathcal{W}_{\mathcal{M}} = C_{\mathcal{M}^*}^{\perp}$ of \mathcal{O}_X^n .

Problem: In general, $\mathcal{V}_{\mathcal{M}^*}$ is *not* orthogonal to $\mathcal{V}_{\mathcal{M}}$.

Step 4: Construct the **perfection** X^{perf} of a band scheme *X*. We have $\mathcal{V}_{\mathcal{M}^*} \perp \mathcal{V}_{\mathcal{M}}$ for all matroid bundles \mathcal{M} on X^{perf} .

Step 5: A morphism $\mathcal{M}_1 \to \mathcal{M}_2$ of pointed matroid bundles on X^{perf} is an \mathbb{F}_1 -linear map $f: E_1 \to E_2$ between the respective ground sets such that $f^*: O_X^{E_2} \to O_X^{E_1}$ maps $\mathcal{V}_{\mathcal{M}_2^*}$ to $\mathcal{V}_{\mathcal{M}_1^*}$.

V. The Tutte-Grothendieck ring

The Tutte-Grothendieck ring

The **Tutte-Grothendieck ring** $K_0^{\text{mat}}(\mathbb{K})$ is the quotient of the free abelian group $\bigoplus \mathbb{Z}.[M]$ generated by all isomorphism classes [M] of (pointed) matroids modulo all relations of the form

 $[M] = [M \backslash e] + [M/e]$

where *e* is an element of *M* that is neither a loop nor a coloop. The product $[M] \cdot [N] = [M \oplus N]$ turns $K_0^{\text{mat}}(\mathbb{K})$ into a ring.

Theorem (Tutte)

The map $\alpha \mapsto [U(1,1)]$ and $\beta \mapsto [U(0,1)]$ defines a ring isomorphism $\mathbb{Z}[\alpha,\beta] \to K_0^{\text{mat}}(\mathbb{K})$, which maps the Tutte polynomial $T_M(\alpha,\beta)$ of a matroid M to its class [M] in $K_0^{\text{mat}}(\mathbb{K})$. Algebraic K-theory

The algebraic K-theory $K_0^{\text{alg}}(\mathbb{K})$ of $\text{Mat}_{\mathbb{K}}$ is the free abelian group $\bigoplus \mathbb{Z}.[M]$ generated by all isomorphism classes [M] of pointed matroids modulo all relations of the form

 $[M] = [M|_S] + [M/S] \qquad (``0 \to M|_S \to M \to M/S \to 0")$

where S is a pointed subset of M.

Theorem (Eppolito-Jun-Szczesny) The map $\alpha \mapsto [U(1,1)]$ and $\beta \mapsto [U(0,1)]$ defines a group isomorphism $\mathbb{Z}.\alpha \oplus \mathbb{Z}.\beta \to K_0^{alg}(\mathbb{K}).$

Remark: The map

 $\deg: K_0^{\mathrm{mat}}(\mathbb{K}) = \mathbb{Z}[\alpha,\beta] \longrightarrow \mathbb{Z}.\alpha \oplus \mathbb{Z}.\beta = K_0^{\mathrm{alg}}(\mathbb{K})$

with $\deg P = (\deg_{\alpha} P, \deg_{\beta} P)$ is a valuation:

$$\begin{split} & \deg(1) = 0, & \deg(P+Q) \leq \max\{\deg P, \deg Q\}, \\ & \deg(P \cdot Q) = \deg P + \deg Q, & \deg([M]) = [M]. \end{split}$$

Matroidal K-theory

Let X be a band scheme. The **matroidal** K-theory of X is

$$K_0^{\text{mat}}(X) = \bigoplus_{\substack{\text{isomorphism} \\ \text{classes } [\mathcal{M}]}} \mathbb{Z}.[\mathcal{M}] / \langle [\mathcal{M}] - [\mathcal{M} \backslash e] - [\mathcal{M} / e] \rangle$$

where \mathcal{M} is a pointed matroid bundle on X and e is not a loop nor a coloop of \mathcal{M} . It is a ring w.r.t. $[\mathcal{M}] \cdot [\mathcal{N}] = [\mathcal{M} \oplus \mathcal{N}]$.

The algebraic *K*-theory of *X* is

$$K_0^{\text{alg}}(X) = \bigoplus_{\substack{\text{isomorphism} \\ \text{classes } [\mathcal{M}]}} \mathbb{Z}.[\mathcal{M}] / \langle [\mathcal{M}] - [\mathcal{M}|_S] - [\mathcal{M}/S] \rangle$$

where S is a pointed subset of \mathcal{M} .

The association $[\mathcal{M}] \mapsto [\mathcal{M}]$ defines a valuation

$$\deg: K_0^{\mathrm{mat}}(X) \longrightarrow K_0^{\mathrm{alg}}(X).$$

The universal Tutte class

The universal Tutte class on Gr(r, n) is the class of the universal matroid bundle $\mathcal{M}^{\text{univ}}$ in $K_0^{\text{mat}}(Gr(r, n))$.

The pullback of matroid bundles along a morphism $\varphi: Y \to X$ of band schemes defines a ring homomorphism

$$\varphi^* : K_0^{\mathrm{mat}}(X) \longrightarrow K_0^{\mathrm{mat}}(Y).$$

Theorem

Let *M* be a matroid and $\mathcal{M} = \varphi^* \mathcal{M}^{\text{univ}}$ the corresponding matroid bundle on Hom(\mathbb{K} , –). Then the Tutte polynomial of *M* is the pullback $\varphi^*([\mathcal{M}^{\text{univ}}])$ as a class of $K_0^{\text{mat}}(\mathbb{K}) = \mathbb{Z}[\alpha, \beta]$.

Fink-Speyer's theorem

The morphisms of complex varieties

$$\operatorname{Gr}(r,n)_{\mathbb{C}} \stackrel{\pi_r}{\longleftarrow} \operatorname{Fl}(1,r,n-1;n)_{\mathbb{C}} \stackrel{\pi_{1,n-1}}{\longrightarrow} \mathbb{P}_{\mathbb{C}}^{n-1} \times (\mathbb{P}_{\mathbb{C}}^{n-1})^{\vee}$$

induce homomorphisms

$$\begin{array}{ccc} K_0(\operatorname{Gr}(r,n)_{\mathbb{C}}) & \xrightarrow{\Xi} & \mathbb{Z}[\alpha_0,\beta_0]/\langle \alpha_0^n,\beta_0^n \rangle \\ & & \downarrow^{\pi^*_r} & \simeq \uparrow \\ K_0(\operatorname{Fl}(1,r,n-1;n)_{\mathbb{C}}) & \xrightarrow{\pi_{1,n-1,*}} & K_0(\mathbb{P}^{n-1}_{\mathbb{C}} \times (\mathbb{P}^{n-1}_{\mathbb{C}})^{\vee}) \end{array}$$

where α_0 and β_0 are the classes of a hyperplane of $\mathbb{P}^{n-1}_{\mathbb{C}}$ and of $(\mathbb{P}^{n-1}_{\mathbb{C}})^{\vee}$, respectively.

A matroid *M* defines a natural class $c_M \in K_0(\operatorname{Gr}(r, n)_{\mathbb{C}})$.

Theorem (Fink-Speyer)

 $T_M(\alpha_0, \beta_0) = \Xi(c_M \cdot [O(1)])$ is the Tutte polynomial of M, considered as element of $\mathbb{Z}[\alpha_0, \beta_0]/\langle \alpha_0^n, \beta_0^n \rangle$.

Can we recover Fink-Speyer's theorem?

Can we recover Fink-Speyer's theorem?

