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I. Bands (joint with Baker and Jin)



Pointed monoids

A pointed monoid is a commutative semigroup A with 1 and 0,
i.e. 1 · a = 1 and 0 · a = 0 for all a ∈ A.

The unit group of A is

A× =
{
a ∈ A

∣∣∣ ab = 1 for some b ∈ A
}
.

The ambient semiring of A is

A+ = N[A]/⟨0A ∼ 0N[A]⟩ =
{∑

ai
∣∣∣ ai ∈ A − {0}}.

An ideal of A+ is a subset I such that 0 ∈ I, I + I = I and
A+ · I = I.



Bands

A band is a pointed monoid B together with an ideal NB ⊂ B+
(the nullset) such that every a ∈ B has a unique −a ∈ B (its
additive inverse) with a + (−a) ∈ NB.

A band morphism is a multiplicative map f : B→ C with
f (0) = 0 and f (1) = 1 such that

∑
f (ai) ∈ NC for all

∑
ai ∈ NB.

This defines the category Bands.

An idyll is a band B with B× = B − {0}.



Examples

▶ A ring R defines the band B = (R, ·) with nullset

NB =
{∑

ai
∣∣∣ ∑ ai = 0 in R

}
.

If R is a field, then B is an idyll.

▶ Other examples of idylls:

K = {0, 1} NK = {n.1 | n , 1} Krasner hyperfield
S = {0,±1} NS = {n.1 +m.(−1) | n = m = 0 or n , 0 , m}

sign hyperfield
T = R≥0 NT = {

∑
ai | maximum occurs twice}

tropical hyperfield
F±1 = {0,±1} NF±1 = {n.1 + n.(−1) | n ≥ 0}

regular partial field
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II. Baker-Bowler theory



B-matroids

Let E = {1, . . . , n} and 0 ≤ r ≤ n. Let B be an idyll.

A Grassmann-Plucker function (of rank r on E) in B is a
non-trivial and alternating map ∆ : Er → B that satisfies the
Plucker relations

r∑
k=0

(−1)k ∆(e0, . . . , êk, . . . , er) ∆(ek, d2, . . . , dr) ∈ NB

for all e0, . . . , er, d2, . . . , dr ∈ E.

A B-matroid (of rank r on E) is a B×-class M = [∆] of a
Grassmann-Plucker function ∆ : Er → B.



Baker-Bowler theory
Example
1. A matroid M of rank r on E corresponds to the K-matroid

[∆ : Er → K] with

∆(e1, . . . , er) =

1 if {e1, . . . , er} is a basis of M;
0 if not.

2. Oriented matroids correspond to S-matroids.
3. Valuated matroids correspond to T-matroids.

Theorem (Baker-Bowler ’19)
▶ Cycles: C(M) ⊂ Bn, with cryptomorphic axioms
▶ Duality: M∗

▶ Orthogonality: C(M) ⊥ C(M∗)
▶ Vectors: V(M) = C(M∗)⊥, axioms by [Anderson ’19]
▶ Minors: M\I/J



Perfect idylls

An idyll B is perfect if V(M) ⊥ V(M∗) for every B-matroid M.

Example
1. All (partial) fields are perfect.
2. K, S and T are perfect.
3. There are many non-perfect idylls.



III. Morphisms
(joint with Baker and Jarra)



F1-linear maps and pointed B-matroids

Let Ei = {0, 1, . . . , ni} for i = 1, 2.

A map f : E1 → E2 is F1-linear if f (0) = 0 and if #f−1(d) ≤ 1 for
all d ∈ E2 − {0}.

The adjoint of f is

f# : E2 −→ E1

d 7−→

e if f−1(d) = {e},
0 if f−1(d) = ∅ or d = 0.

Let B an idyll. A pointed B-matroid is a B-matroid
M = [∆ : Er → B] for which 0 is a loop, i.e. ∆(0, e2, . . . , er) = 0
for all e2, . . . , er ∈ E.



Morphisms over perfect idylls
Assume that B is perfect. Let Mi = [∆i : Eri

i → B] be pointed
B-matroids for i = 1, 2.

A morphism M1 → M2 is a strong F1-linear map f : E1 → E2,
i.e. f ∗ : BE2 → BE1 restricts to V(M∗2)→V(M∗1 ).

This defines the category MatB of pointed B-matroids.

Theorem
Let f : E1 → E2 an F1-linear map. Then the following are
equivalent:
1. f defines a morphism M1 → M2.
2. f# : E2 → E1 defines a morphism M∗2 → M∗1 .
3. f ∗

(
C(M∗2)

)
⊥ C(M1).

4. For all e0, . . . , er1 ∈ E1 and d2, . . . , dr2 ∈ E2,
r1∑

k=0
(−1)k ∆1

(
e0, . . . , êk, . . . , er1

)
∆2
(
f (ek), d2, . . . , dr2

)
∈ NB.



Examples

Let M be a pointed B-matroid and S a pointed subset of M.

1. The restriction M|S → M is a morphism.
2. The contraction M → M/S is a morphism.
3. Matroid quotients M → N are morphisms.
4. Identifying parallel elements defines a strong map M → N

that is not F1-linear.



Perfection

Remark
If B is not perfect, then restrictions and contractions fail to
preserve vectors in general.

Let B be an idyll. The perfection of B is the limit Bperf = limP
over all morphisms B→ P into perfect idylls P.

Theorem
1. Bperf is perfect.
2. The canonical morphism ω : B→ Bperf is a bijection.
3. NBperf =

⋂
NP as subsets of B+ where NP ranges over all

bijective morphisms B→ P into perfect idylls P.

Problem
We do not know an explicit description of NBperf .



Preperfect B-matroids

We define the category of preperfect B-matroids as
MatB = MatBperf .

Remark
Every B-matroid (in Baker-Bowler’s sense) is preperfect.
Both notions agree if B is perfect.



IV. Matroid bundles (joint with Baker)



Band schemes
An affine band scheme is a representable functor
Hom(B,−) : Bands→ Sets.

A band scheme is a functor X : Bands→ Sets that has an open
cover by affine band schemes.

A morphism of band schemes is a morphism of functors.

Example
1. The projective n-space Pn : Bands→ Sets is defined as

Pn(B) =
(
Bn+1 − {0}

)
/B× = {[a0 : · · · : an] | a0, . . . , an ∈ B}.

2. The Grassmannian Gr(r, n) : Bands→ Sets is defined as

Gr(r, n)(B) =
{
[∆(e1, . . . , er)]

∣∣∣Plücker relations
}
⊂ Pn

r−1(B).



The moduli space of matroids

Let X be a band scheme. A matroid bundle on X is an
isomorphism class of a Grassmann-Plücker function
∆ : Er → Γ(X,L) where L is a line bundle on X.

Theorem
1. For every idyll B and X = Hom(B,−), there is a canonical

bijection

ΦB :
{
B-matroids

}
−→

{
matroid bundles on X

}
.

2. For every band scheme X, there is a canonical bijection

ΨX : Hom
(
X,Gr(r, n)

)
−→

{ matroid bundles on X
of rank r on {1, . . . , n}

}
.

The universal family on Gr(r, n) is Muniv = ΨGr(r,n)
(
idGr(r,n)

)
.

The matroid bundle ΨX
(
φ : X → Gr(r, n)

)
is the pullback φ∗Muniv.



Morphisms
Step 1: Explicit construction of a coherent subsheaf
Cuniv = CMuniv (the universal cycle bundle) of On

Gr(r,n).

Step 2: For a matroid bundle M = φ∗Muniv on a band scheme
X, we define its cycle bundle as CM = φ∗MC

univ.

Remark: This recovers Baker-Bowler’s cycles of a B-matroid.

Step 3: The vector bundle of M is the coherent subsheaf
VM = C

⊥
M∗

of On
X .

Problem: In general, VM∗ is not orthogonal to VM.

Step 4: Construct the perfection Xperf of a band scheme X.
We have VM∗ ⊥ VM for all matroid bundles M on Xperf.

Step 5: A morphism M1 →M2 of pointed matroid bundles on
Xperf is an F1-linear map f : E1 → E2 between the respective
ground sets such that f ∗ : OE2

X → O
E1
X maps VM∗2 to VM∗1 .



V. The Tutte-Grothendieck ring



The Tutte-Grothendieck ring

The Tutte-Grothendieck ring Kmat
0 (K) is the quotient of the free

abelian group
⊕
Z.[M] generated by all isomorphism classes [M]

of (pointed) matroids modulo all relations of the form

[M] = [M\e] + [M/e]

where e is an element of M that is neither a loop nor a coloop.
The product [M] · [N] = [M ⊕N] turns Kmat

0 (K) into a ring.

Theorem (Tutte)
The map α 7→ [U(1, 1)] and β 7→ [U(0, 1)] defines a ring
isomorphism Z[α, β]→ Kmat

0 (K), which maps the Tutte polynomial
TM(α, β) of a matroid M to its class [M] in Kmat

0 (K).



Algebraic K-theory
The algebraic K-theory Kalg

0 (K) of MatK is the free abelian
group

⊕
Z.[M] generated by all isomorphism classes [M] of

pointed matroids modulo all relations of the form

[M] = [M|S] + [M/S] (“0→ M|S → M → M/S→ 0”)

where S is a pointed subset of M.

Theorem (Eppolito-Jun-Szczesny)
The map α 7→ [U(1, 1)] and β 7→ [U(0, 1)] defines a group
isomorphism Z.α ⊕ Z.β→ Kalg

0 (K).

Remark: The map

deg : Kmat
0 (K) = Z[α, β] −→ Z.α ⊕ Z.β = Kalg

0 (K)

with degP = (degα P,degβ P) is a valuation:

deg(1) = 0, deg(P +Q) ≤ max{degP,degQ},
deg(P ·Q) = degP + degQ, deg([M]) = [M].



Matroidal K-theory
Let X be a band scheme. The matroidal K-theory of X is

Kmat
0 (X) =

⊕
isomorphism
classes [M]

Z.[M]
/
⟨[M] − [M\e] − [M/e]⟩

where M is a pointed matroid bundle on X and e is not a loop
nor a coloop of M. It is a ring w.r.t. [M] · [N] = [M⊕N].

The algebraic K-theory of X is

Kalg
0 (X) =

⊕
isomorphism
classes [M]

Z.[M]
/
⟨[M] − [M|S] − [M/S]⟩

where S is a pointed subset of M.

The association [M] 7→ [M] defines a valuation

deg : Kmat
0 (X) −→ Kalg

0 (X).



The universal Tutte class

The universal Tutte class on Gr(r, n) is the class of the
universal matroid bundle Muniv in Kmat

0
(
Gr(r, n)

)
.

The pullback of matroid bundles along a morphism φ : Y → X of
band schemes defines a ring homomorphism

φ∗ : Kmat
0 (X) −→ Kmat

0 (Y).

Theorem
Let M be a matroid andM = φ∗Muniv the corresponding matroid
bundle on Hom(K,−). Then the Tutte polynomial of M is the
pullback φ∗([Muniv]) as a class of Kmat

0 (K) = Z[α, β].



Fink-Speyer’s theorem
The morphisms of complex varieties

Gr(r, n)C
πr
←− Fl(1, r, n − 1; n)C

π1,n−1
−→ Pn−1C × (Pn−1C )∨

induce homomorphisms

K0
(
Gr(r, n)C

)
Z[α0, β0]/⟨αn0, β

n
0⟩

K0
(
Fl(1, r, n − 1; n)C

)
K0
(
Pn−1
C
× (Pn−1

C
)∨
)

Ξ

π∗r

π1,n−1,∗

≃

where α0 and β0 are the classes of a hyperplane of Pn−1
C

and of
(Pn−1
C

)∨, respectively.

A matroid M defines a natural class cM ∈ K0
(
Gr(r, n)C

)
.

Theorem (Fink-Speyer)
TM(α0, β0) = Ξ

(
cM · [O(1)]

)
is the Tutte polynomial of M,

considered as element of Z[α0, β0]/⟨αn0, β
n
0⟩.



Can we recover Fink-Speyer’s theorem?
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Kmat
0 (K)
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det
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