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I. Bands (joint with Baker and Jin)



Pointed monoids

A pointed monoid is a commutative semigroup A with 1 and 0,
ie.l-a=1and 0-a =0 for all a € A.

The unit group of A is
A* = {a€A|ab =1 for some b € A}.
The ambient semiring of A is
A" = N[A]/(0a ~ Onpap) = {Zai|aie A-{0}).

An ideal of At is a subset I such that 0 €I, I+I=1I and
At -T=1.



Bands

A band is a pointed monoid B together with an ideal Ng C B*
(the nullset) such that every a € B has a unique —a € B (its
additive inverse) with a + (—a) € Np.

A band morphism is a multiplicative map f : B — C with
f(0) =0 and f(1) =1 such that > f(a;) € N¢ for all > a; € Np.

This defines the category Bands.

An idyll is a band B with B* = B — {0}.



Examples

> A ring R defines the band B = (R, -) with nullset
Np = {Zai| >a;=0in R}.
If R is a field, then B is an idyll.

> Other examples of idylls:

K ={0,1} Nk ={n.l|n #1} Krasner hyperfield

S={0,+1} | Ns={nl+m.(-1)|n=m=0orn#0#m}
sign hyperfield

T =Ry Nt = {3 a; | maximum occurs twice}
tropical hyperfield

Ff ={0,£1} | Ng: = {n.l+n.(-1) | n > 0}
regular partial field




Categorical landscape

Baker-Bowler theory towards geometry

idylls bands

partial fields

fields rings

hyperfields

1 )
\




II. Baker-Bowler theory



B-matroids

Let E={1,...,n} and 0 <r <n. Let B be an idyll.

A Grassmann-Plucker function (of rank r on E) in B is a
non-trivial and alternating map A : E" — B that satisfies the
Pliicker relations

r
kz() (_l)k A(CO""’acv"-’er) A(ek9d2"--7dr) € NB

for all eg,...,er,do,...,d, € E.

A B-matroid (of rank r on E) is a B*-class M = [A] of a
Grassmann-Pliicker function A : E" — B.



Baker-Bowler theory

Example

1. A matroid M of rank r on E corresponds to the K-matroid

[A: E" — K] with
Aler,...,er) = {

1 if{eq,...,e} is a basis of M;
0 if not.

2. Oriented matroids correspond to S-matroids.

3. Valuated matroids correspond to T-matroids.

Theorem (Baker-Bowler '19)
> Cycles: C(M) c B", with cryptomorphic axioms
» Duality: M*
» Orthogonality: C(M) L C(M*)
> Vectors: V(M) = C(M*)*, axioms by [Anderson '19]
» Minors: M\I1/J



Perfect idylls

An idyll B is perfect if V(M) L V(M™) for every B-matroid M.

Example

1. All (partial) fields are perfect.
2. K, S and T are perfect.

3. There are many non-perfect idylls.



II1. Morphisms
(joint with Baker and Jarra)



Fi-linear maps and pointed B-matroids

Let E; ={0,1,...,n;} for i =1,2.

A map f : E; —» Ey is Fi-linear if f(0) = 0 and if #~'(d) <1 for
all d € E5 — {0}.

The adjoint of f is

ff: Ey — E;
d e if f7i(d) = fe},
0 if fi(d)=0ord=0.

Let B an idyll. A pointed B-matroid is a B-matroid
M = [A : E" — B] for which 0 is a loop, i.e. A(0,e,...,e;,) =0
for all e9,...,e. € E.



Morphisms over perfect idylls
Assume that B is perfect. Let M; = [A; : E}' — B] be pointed
B-matroids for i = 1, 2.
A morphism M; — My is a strong Fy-linear map f : E; — Eg,
i.e. f*: BF2 — BFi restricts to V(M) — V(M).

This defines the category Matgp of pointed B-matroids.

Theorem
Let f : Ey — Ey an Fi-linear map. Then the following are
equivalent:

1. f defines a morphism M; — M.

2. f* . Ey — E| defines a morphism M — M.
3. f(C(ME)) L COMY).

4. For all eg,...,e, € Ey and dy, ... ,d,, € Eo,

n

Z (_1)k A1(609 ceey é]:’ oo 9er1) AZ(f(ek)a d2’ oo 7dr2) € NB'
k=0



Examples

Let M be a pointed B-matroid and S a pointed subset of M.

1.
2.
3.
4.

The restriction M|s — M is a morphism.
The contraction M — M/S is a morphism.
Matroid quotients M — N are morphisms.

Identifying parallel elements defines a strong map M — N
that is not Fi-linear.



Perfection

Remark
If B is not perfect, then restrictions and contractions fail to
preserve vectors in general.

Let B be an idyll. The perfection of B is the limit B = lim P
over all morphisms B — P into perfect idylls P.

Theorem
1. B**" is perfect.
2. The canonical morphism w : B — BP*" is a bijection.

3. Nppert = (| Np as subsets of B* where Np ranges over all
bijective morphisms B — P into perfect idylls P.

Problem
We do not know an explicit description of Npgperr.



Preperfect B-matroids

We define the category of preperfect B-matroids as
MatB = Matherf.

Remark
Every B-matroid (in Baker-Bowler’s sense) is preperfect.
Both notions agree if B is perfect.



IV. Matroid bundles (joint with Baker)



Band schemes

An affine band scheme is a representable functor
Hom(B, —) : Bands — Sets.

A band scheme is a functor X : Bands — Sets that has an open
cover by affine band schemes.

A morphism of band schemes is a morphism of functors.
Example
1. The projective n-space P" : Bands — Sets is defined as
PYB) = (B"™'-{0)/B* = {lao:---:anl|ao,....a, € B).
2. The Grassmannian Gr(r,n) : Bands — Sets is defined as

Gr(r,n)(B) = {[A(el,...,er)]|Plucker relations} C ]P’”r_l(B).



The moduli space of matroids

Let X be a band scheme. A matroid bundle on X is an
isomorphism class of a Grassmann-Pliicker function
A:E" - TI'(X, /L) where L is a line bundle on X.
Theorem
1. For every idyll B and X = Hom(B, —), there is a canonical
bijection

®p : {B-matroids} — {matroid bundles on X}.

2. For every band scheme X, there is a canonical bijection

¥y : Hom (X, Gr(r,n)) — { matroid bundles on X }
X , )

of rankron {1,...,n}

The universal family on Gr(r,n) is MW = Wer, ) (idGren))-
The matroid bundle ¥x(¢ : X — Gr(r,n)) is the pullback @* M“™W.



Morphisms

Step 1: Explicit construction of a coherent subsheaf

CYW = Cppuuv (the universal cycle bundle) of OGr(rny:

Step 2: For a matroid bundle M = ¢* M“™ on a band scheme
X, we define its cycle bundle as Cp = ¢, C*"™.

Remark: This recovers Baker-Bowler’s cycles of a B-matroid.
Step 3: The vector bundle of M is the coherent subsheaf
Vm= C/lw of O%.

Problem: In general, V4 is not orthogonal to V.

Step 4: Construct the perfection XPf of a band scheme X.
We have Ve L Vo for all matroid bundles M on XP°.

Step 5: A morphism M; —» My of pointed matroid bundles on
X is an Fj-linear map f : E; — E5 between the respective
ground sets such that f* : O)E(2 - Offl maps Vg to V.



V. The Tutte-Grothendieck ring



The Tutte-Grothendieck ring

The Tutte-Grothendieck ring Kgla‘(K) is the quotient of the free
abelian group @ Z.[M] generated by all isomorphism classes [M]
of (pointed) matroids modulo all relations of the form

[M] = [M\e] + [M/e]

where e is an element of M that is neither a loop nor a coloop.
The product [M] - [N] = [M & N] turns Kg‘a‘(K) into a ring.

Theorem (Tutte)

The map a — [U(1,1)] and B — [U(0,1)] defines a ring
isomorphism Z[a, ] — Kg"at(K), which maps the Tutte polynomial
Ty(a, B) of a matroid M to its class [M] in Kg’”a‘(K).



Algebraic K-theory
The algebraic K-theory Kglg(K) of Matg is the free abelian
group EB Z.[M] generated by all isomorphism classes [M] of
pointed matroids modulo all relations of the form

[M] = [M]s] + [M/S] (0> Ml|s > M - M/S — 07)

where S is a pointed subset of M.
Theorem (Eppolito-Jun-Szczesny)
The map a — [U(1,1)] and 8 — [U(0,1)] defines a group
isomorphism Z.a ® Z.5 — Kglg(K).
Remark: The map

deg: KI™(K) = Z[a,fl — Za®ZB = Kj4(K)
with  degP = (deg, P,degz P) is a valuation:

deg(1) = 0, deg(P + Q) < max{deg P, deg Q},

deg(P- Q) =degP +degQ, deg(M]) =[M].



Matroidal K-theory
Let X be a band scheme. The matroidal K-theory of X is

Kp*X) = ZIMI [ M- [Miel - [M/e])
isomorphism

classes [M]

where M is a pointed matroid bundle on X and e is not a loop
nor a coloop of M. It is a ring w.r.t. [M] - [N] = [Ma N].

The algebraic K-theory of X is
KEX) = @ ZIMI [ (M- [Mis] - IM/SD

isomorphism
classes [M]

where S is a pointed subset of M.

The association [M] — [M] defines a valuation

deg : KI'™(X) — K (X).



The universal Tutte class

The universal Tutte class on Gr(r,n) is the class of the
universal matroid bundle M*™W in K Gr(r, n)).

The pullback of matroid bundles along a morphism ¢ : ¥ — X of
band schemes defines a ring homomorphism

" K§MX) — K§PU(Y).

Theorem

Let M be a matroid and M = ¢* MW the corresponding matroid
bundle on Hom(K, —). Then the Tutte polynomial of M is the
pullback ¢*(IM*""]) as a class of KM (K) = Z[a, .



Fink-Speyer’s theorem
The morphisms of complex varieties

Gr(r,me <= Fi(Lrn-Tine —5 Pl x @5

induce homomorphisms

Ko( Gr(r, n)c) ——=—— Z[ao, Bol/{a}. B

k 7

Ko(FI(L r,n - 1;n)c) —=% Ko(BL! x (B)Y)

where a@g and By are the classes of a hyperplane of P%‘l and of
(]P%‘I)V, respectively.

A matroid M defines a natural class ¢y € Ko( Gr(r, n)c).
Theorem (Fink-Speyer)

Tr(@o,Bo) = E(en - [0Q)]) is the Tutte polynomial of M,
considered as element of Zlao, Bol/{ay,By)-



Can we recover Fink-Speyer’s theorem?

KO( Gr(r7 n)C)
U
ey - [0)] = Ty(ao,Bo) l
K{#(K) Ko(Fl(1,r,n - 1;n)c)
[M] = Tu(ao, o) l’“‘"‘l’*

14

Ko(BZ ! x BEHY)

Jz

Zla, B) Zlao, Bol/ay, By)

B Bo




Can we recover Fink-Speyer’s theorem?

det

K Gr(r, n)) Ko( Gr(r, n)c)
/ l”i Jﬂ:
A det
Ky (K) KM@Y FI(L, r,n - 1;n)) ———— Ko(Fl(1,r,n - 1;n)c)
\ Tﬂinfl ﬂr,n—l Tl TTn-1,%
>

KS’Lat(Pn—l % (Pn—l)\/) det KO(P%—l % (P%_I)V)

Jz

Zla, B) Zlao, Bol/ay, By)

B Bo
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