Moduli spaces in matroid theory

Oliver Lorscheid IMPA / University of Groningen

Based on joint work with Matthew Baker and with Manoel Jarra

Prologue

Spaces of matroids Let $E = \{1, ..., n\}$ and $0 \le r \le n$.

Combinatorial flag varieties ([Borovic-Gelfand-White '00])

 $\Omega_{S_n} = \{ \text{flag matroids on } E \},\$

where a flag matroid $\mathbf{M} = (M_1, \dots, M_{k+1})$ defines a k-simplex.

MacPhersonians (after [Mnev-Ziegler '93])

 $MacPh(r, E) = \{ oriented matroids of rank r on E \},$

which gain a topology / simplicial structure from weak maps.

Dressians (after [Speyer '08])

 $Dr(r, E) = \{ valuated matroids of rank r on E \},\$

considered as tropical varieties.

Some exotic algebraic objects

The **Krasner hyperfield** is $\mathbb{K} = \{0, 1\}$ together with the obvious multiplication and the addition table

The sign hyperfield is $S = \{0, 1, -1\}$ together with the obvious multiplication and the addition table

+	0	1	
0	0	1	-1
1	1	1	$0, \pm 1$
-1	-1	$0,\pm 1$	-1

The **tropical hyperfield** is $\mathbb{T} = \mathbb{R}_{\geq 0}$ together with the obvious multiplication and the addition

$$a \boxplus b = \begin{cases} \{\max\{a, b\}\} & \text{if } a \neq b; \\ [0, a] & \text{if } a = b. \end{cases}$$

The **regular partial field** is $\mathbb{F}_1^{\pm} = \{0, 1, -1\}$ together with the obvious multiplication and the addition table

Part 1. Bands (joint with Baker)

Pointed monoids

A **pointed monoid** is a commutative semigroup A with 1 and 0, i.e. $1 \cdot a = 1$ and $0 \cdot a = 0$ for all $a \in A$.

The unit group of A is

$$A^{\times} = \{a \in A \mid ab = 1 \text{ for some } b \in A\},\$$

and the **ambient semiring** of A is

$$A^+ = \mathbb{N}[A]/\langle 0_A \sim 0_{\mathbb{N}[A]} \rangle = \left\{ \sum a_i \, \middle| \, a_i \in A - \{0\} \right\}$$

An ideal of A^+ is a subset I such that $0 \in I$, $A^+ \cdot I = I$ and I + I = I.

Bands

A **band** is a pointed monoid *B* together with an ideal $N_B \subset B^+$ (the *nullset*) and together with an element $-1 \in B$ (the *negative one*) such that $(-1)^2 = 1$ and 1 - 1 := 1 + (-1) is in N_B .

A **band morphism** is a map $f : B \to C$ such that

1.
$$f(0) = 0$$
, $f(1) = 1$ and $f(-1) = -1$;

2.
$$f(a \cdot b) = f(a) \cdot f(b);$$

3.
$$\sum a_i \in N_B$$
 implies $\sum f(a_i) \in N_C$

for all $a, b, a_i \in B$.

Remark: The category of bands has all limits and colimits, free algebras and "quotients".

An **idyll** is a band B such that $B^{\times} = B - \{0\}$ and such that $a + b \in N_B$ if and only if a equals $-b := (-1) \cdot b$.

Examples

A ring R defines the band $B = (R, \cdot)$ with nullset

$$N_B = \left\{ \sum a_i \right| \sum a_i = 0 \text{ in } R \right\}$$

and negative one -1. If R is a field, then B is an idyll.

A hyperfield F defines the idyll $B = (F, \cdot)$ with nullset

$$N_B = \left\{ \sum a_i \mid 0 \in \prod a_i \text{ in } F \right\}$$

and negative one -1. For instance,

 $\begin{array}{|c|c|c|c|c|} \mathbb{K} = \{0,1\} & N_{\mathbb{K}} = \{n.1 \mid n \neq 1\} & (terminal \ as \ idyll) \\ \hline \mathbb{S} = \{0,\pm1\} & N_{\mathbb{S}} = \{n.1+m.(-1) \mid n = m = 0 \ \text{or} \ n \neq 0 \neq m\} \\ \hline \mathbb{T} = \mathbb{R}_{\geq 0} & N_{\mathbb{T}} = \{\sum a_i \mid \text{maximum occurs twice}\} \\ \hline \mathbb{F}_1^{\pm} = \{0,\pm1\} & N_{\mathbb{F}_1^{\pm}} = \{n.1+n.(-1) \mid n \geq 0\} \\ & (initial \ as \ both \ band \ and \ idyll) \\ \end{array}$

Categorical landscape

Baker-Bowler theory

towards geometry

idylls	bands
partial fields	
fields	rings
hyperfields	

Part 2. Baker-Bowler theory

B-matroids

Let $E = \{1, ..., n\}$ and $0 \le r \le n$. Let B be an idyll.

A Grassmann-Plücker function (of rank r on E) in B is a non-trivial and alternating map $\Delta : E^r \to B$ that satisfies the *Plücker relations*

$$\sum_{k=1}^{r+1} (-1)^k \Delta(e_1, \ldots, e_{r-1}, f_k) \Delta(f_1, \ldots, \widehat{f_k}, \ldots, f_{r+1}) \in N_B$$

for all $e_1, ..., e_{r-1}, f_1, ..., f_{r+1} \in E$.

A *B*-matroid (of rank *r* on *E*) is a B^{\times} -class $M = [\Delta]$ of a Grassmann-Plücker function $\Delta : E^r \to B$.

Baker-Bowler theory

Example

 A matroid *M* of rank *r* on *E* corresponds to the K-matroid [Δ : E^r → K] with

 $\Delta(e_1,\ldots,e_r) = \begin{cases} 1 & \text{if } \{e_1,\ldots,e_r\} \text{ is a basis of } M; \\ 0 & \text{if not.} \end{cases}$

- 2. Oriented matroids correspond to S-matroids.
- 3. Valuated matroids correspond to T-matroids.

Theorem (Baker-Bowler '19)

- Cycles: $C(M) \subset B^n$, with cryptomorphic axioms
- Duality: M*
- Orthogonality: $C(M) \perp C(M^*)$
- ▶ Vectors: $\mathcal{V}(M) = C(M^*)^{\perp}$, axioms by [Anderson '19]
- Minors: $M \setminus I/J$

Part 3. Band schemes (joint with Baker)

Localizations

Let *B* be a band. A **multiplicative set** in *B* is a subset *S* of *B* such that $1 \in S$ and $S \cdot S = S$.

The localization of B at S is the monoid

 $S^{-1}B = \left\{ \begin{array}{c} \frac{a}{s} \\ \end{array} \middle| \ a \in B, s \in S \right\},$

together with the nullset

$$S^{-1}N_B = \left\langle \sum \frac{a_i}{1} \right| \sum a_i \in N_B \right\rangle$$

and the negative one $\frac{-1}{1}$.

A **prime ideal** of *B* is a subset \mathfrak{p} of *B* such that $0 \in \mathfrak{p}$, $B \cdot \mathfrak{p} = \mathfrak{p}$ and $S = B - \mathfrak{p}$ is a multiplicative set in *B*.

In particular:

 $B[h^{-1}] = S^{-1}B \qquad \text{for } h \in B \text{ and } S = \{h^i\}_{i \ge 0};$ $B_{\mathfrak{p}} = S^{-1}B \qquad \text{for } \mathfrak{p} \subset B \text{ prime and } S = B - \mathfrak{p}.$

The spectrum

Let B be a band. The spectrum of B is the set

Spec $B = \{ \text{prime ideals } \mathfrak{p} \subset B \},\$

together with the topology generated by the principal opens

$$U_h = \{ \mathfrak{p} \subset B \mid h \notin \mathfrak{p} \} \qquad (\text{for } h \in B).$$

Theorem

There exists a uniquely determined sheaf O_X in bands on $X = \operatorname{Spec} B$ (the structure sheaf) such that

•
$$O_X(U_h) = B[h^{-1}]$$
 for all $h \in B$;

•
$$O_{X,\mathfrak{p}} = B_{\mathfrak{p}}$$
 for all $\mathfrak{p} \in X$.

A **band scheme** is a topological space X together with a sheaf O_X in bands that is locally isomorphic to the spectra of bands.

There is a natural notion of morphisms of band schemes.

Examples of band schemes (over \mathbb{F}_1^{\pm})

Similarly, there are projective spaces \mathbb{P}^n for all n > 0 over \mathbb{F}_1^{\pm} .

More generally, for every fan Δ of cones in \mathbb{R}^n , there is a *toric* band scheme $\Sigma(\Delta)$ over \mathbb{F}_1^{\pm} .

Base extension to \mathbb{Z} and descent to \mathbb{F}_1^{\pm}

Let *B* be a band. The **base extension** of *B* to \mathbb{Z} is the ring

$$B_{\mathbb{Z}}^+ = \mathbb{Z}[B]/\langle N_B \rangle.$$

This extends to the base extension for band schemes:

$$X = \bigcup \operatorname{Spec} B_i \longmapsto X_{\mathbb{Z}}^+ = \bigcup \operatorname{Spec} B_{i\mathbb{Z}}^+.$$

Conversely, the closed immersion $X \to Y_{\mathbb{Z}}^+$ of a scheme X into the base extension of a band scheme Y defines a **band model** X of X together with a closed immersion $X \to Y$. Part 4. Moduli spaces of matroids (joint with Baker)

Matroid bundles and their moduli space

The *Plücker embedding* $\operatorname{Gr}(r, n)_{\mathbb{Z}} \hookrightarrow \mathbb{P}_{\mathbb{Z}}^{N}$ (for $N = {n \choose r} - 1$) defines the band model $\operatorname{Gr}(r, n) \hookrightarrow \mathbb{P}^{N}$.

There is a natural extension of B-matroids to matroid bundles over a band scheme X (in terms of Grassmann-Plücker functions), which poses the moduli functor

 $X \mapsto \{\text{matroid bundles on } X\}.$

Theorem (Baker-L '21)

Gr(r, n) is the fine moduli space of matroid bundles. As a consequence, there is a canonical bijection

 $\operatorname{Gr}(r, n)(B) \longrightarrow \{B\text{-matroids}\}$

for every idyll B.

Part 5. Flag matroids with coefficients (joint with Jarra)

Flag B-matroids

Let $0 \le r_1 \le \cdots \le r_s \le n$ and $\mathbf{r} = (r_1, \dots, r_s)$. Let $Fl(\mathbf{r}, n)_{\mathbb{Z}}$ be the flag variety of type \mathbf{r} flags in *n*-space. The closed immersion

$$\eta_{\mathbb{Z}}: \operatorname{Fl}(\mathbf{r},n)_{\mathbb{Z}} \longrightarrow \prod_{i=1}^{s} \operatorname{Gr}(r_{i},n)_{\mathbb{Z}}$$

defines the band model

$$\eta: \operatorname{Fl}(\mathbf{r},n) \longrightarrow \prod_{i=1}^{s} \operatorname{Gr}(r_{i},n).$$

Definition

Let *B* be an idyll. A flag *B*-matroid is a sequence (M_1, \ldots, M_s) of *B*-matroids that corresponds to a point in the image of

$$\eta_B : \operatorname{Fl}(\mathbf{r}, n)(B) \longrightarrow \prod_{i=1}^s \operatorname{Gr}(r_i, n)(B).$$

Example

Flag matroids correspond to flag \mathbb{K} -matroids. Valuated flag matroids (after [Brandt-Eur-Zhang '21]) correspond to flag \mathbb{T} -matroids.

Baker-Bowler theory for flag matroids

Theorem (Jarra-L '22) Let B be an idyll and $\mathbf{M} = (M_1, \dots, M_s)$ a sequence of B-matroids of ranks $\mathbf{r} = (r_1, \dots, r_s)$ on E. Then we have:

- Cryptomorphic descriptions:
 - 1. $\mathbf{M} \in Fl(\mathbf{r}, E)(B)$
 - 2. $C(M_i^*) \subset V(M_j^*)$ for all $1 \le i \le j \le s$
 - 3. given $M_i = [\Delta_i]$ for $i = 1, \ldots, s$, we have

$$\sum_{k=1}^{r_j+1} (-1)^k \Delta_i(e_1,\ldots,e_{r_i-1},f_k) \Delta_j(f_1,\ldots,\widehat{f_k},\ldots,f_{r_j+1})$$

for all $i \leq j$ and $e_1, \ldots, e_{r_i-1}, f_1, \ldots, f_{r_j+1} \in E$

- *Duality:* $\mathbf{M}^* = (M_s^*, \dots, M_1^*)$
- Orthonality: $C(M_i^*) \perp C(M_j)$ for $i \leq j$
- *Minors:* $\mathbf{M} \setminus I/J = (M_1 \setminus I/J, \dots, M_s \setminus I/J)$

Part 6. Applications

Application 1 (with Baker)

A (usual) matroid M corresponds to a \mathbb{K} -rational point of $\operatorname{Gr}(r, n)$, which comes with a "residue field" k_M . The **foundation** of M is an idyll F_M derived from k_M .

Theorem (Baker-L '21)

M is representable over a (partial) field *K* (resp. is orientable) if and only if there exists a morphism $F_M \to K$ (resp. $F_M \to S$). Further results:

1. Structure theorem for F_M of M without minors of types U(2,5) and U(3,5), with manifold consequences. Sample application: let $X_M(K)$ be the variety of rescaling classes of M over a field K. Then for all ternary M,

 $\# \mathcal{X}_M(\mathbb{F}_4) \cdot \# \mathcal{X}_M(\mathbb{F}_5) = \# \mathcal{X}_M(\mathbb{F}_8).$

2. Computational methods for F_M , Macaulay2 package by Chen and Zhang.

Application 2 (with Jarra)

We gain the notion of a strong map $f: M \to N$ of *B*-matroids in terms of the cryptomorphic descriptions:

1.
$$f(\mathcal{C}(M)) \subset \mathcal{V}(N);$$

2. for all $e_1, \ldots, e_{\mathsf{rk}(M)-1} \in E_M$ and $f_1, \ldots, f_{\mathsf{rk}(N)+1} \in E_N$, we have

$$\sum_{k=1}^{\operatorname{rk}(N)+1} (-1)^k \Delta_M(e_1, \dots, e_{\operatorname{rk}(M)-1}, f_k) \cdot \Delta_N(f_1, \dots, \widehat{f_k}, \dots, f_{\operatorname{rk}(N)+1}) \in N_B.$$

Problem: Strong maps are in general not composable. Thus we might need to impose additional requirements.

Application 3 (with Baker / Jarra)

Let B be a band with topology, e.g.

- \blacktriangleright \mathbb{R} with the usual real topology;
- $\mathbb{T} = \mathbb{R}_{\geq 0}$ with the real topology;
- ▶ S with the topology generated by {1} and {-1}.

Then $Fl(\mathbf{r}, E)(B)$ inherits the *fine topology* (after [L-Salgado '16]).

We get:

- ▶ $Fl(\mathbf{r}, n)(\mathbb{R})$ is the real flag manifold (of type **r** flags in \mathbb{R}^n).
- $Gr(r, n)(\mathbb{T})$ is the Dressian (of tropical linear spaces in \mathbb{T}^n).
- $Gr(r, n)(\mathbb{S})$ is the MacPhersonian (of oriented matroids).
- $\Omega_{S_n} = \prod_{\mathbf{r}} \operatorname{Fl}(\mathbf{r}, n)(\mathbb{K})$, with face relation by omitting entries:

 $\operatorname{Gr}(1,3) \longleftarrow \operatorname{Fl}(1,2;3) \longrightarrow \operatorname{Gr}(2,3)$

Face relations for flags on $E = \{1, \ldots, 4\}$

Revisited: the combinatorial flag variety Ω_{S_3}

Excerpt from "Coxeter matroids" by Borovik, Gelfand and White

Many geometries over fields have formal analogues which can be thought of as geometries over the field of 1 element.

[...]

In general, the Coxeter complex W of a Coxeter group W is a thin building of type W and behaves like the building of type W over the field of 1 element.

However, the Coxeter complex has a relatively poor structure. In many aspects, Ω_W and Ω^*_W are more suitable candidates for the role of a "universal" combinatorial geometry of type W over the field of 1 element.