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Prologue



Spaces of matroids
Let E = {1, . . . , n} and 0 ≤ r ≤ n.

Combinatorial flag varieties ([Borovic-Gelfand-White ’00])

ΩSn =
{
flag matroids on E

}
,

where a flag matroid M = (M1, . . . ,Mk+1) defines a k-simplex.

MacPhersonians (after [Mnev-Ziegler ’93])

MacPh(r,E) =
{
oriented matroids of rank r on E

}
,

which gain a topology / simplicial structure from weak maps.

Dressians (after [Speyer ’08])

Dr(r,E) =
{
valuated matroids of rank r on E

}
,

considered as tropical varieties.



Some exotic algebraic objects
The Krasner hyperfield is K = {0, 1}
together with the obvious multiplication
and the addition table

+ 0 1
0 0 1
1 1 0, 1

The sign hyperfield is S = {0, 1,−1}
together with the obvious multiplication
and the addition table

+ 0 1 −1
0 0 1 −1
1 1 1 0,±1
−1 −1 0,±1 −1

The tropical hyperfield is T = R≥0 together with the obvious
multiplication and the addition

a � b =


{
max{a, b}

}
if a , b;

[0, a] if a = b.

The regular partial field is F±1 = {0, 1,−1}
together with the obvious multiplication
and the addition table

+ 0 1 −1
0 0 1 −1
1 1 − 0
−1 −1 0 −



Part 1. Bands (joint with Baker)



Pointed monoids

A pointed monoid is a commutative semigroup A with 1 and 0,
i.e. 1 · a = 1 and 0 · a = 0 for all a ∈ A.

The unit group of A is

A× =
{
a ∈ A

∣∣∣ ab = 1 for some b ∈ A
}
,

and the ambient semiring of A is

A+ = N[A]/〈0A ∼ 0N[A]〉 =
{∑

ai
∣∣∣ ai ∈ A − {0}}

An ideal of A+ is a subset I such that 0 ∈ I, A+ · I = I and
I + I = I.



Bands

A band is a pointed monoid B together with an ideal NB ⊂ B+

(the nullset) and together with an element −1 ∈ B (the negative
one) such that (−1)2 = 1 and 1 − 1 := 1 + (−1) is in NB.

A band morphism is a map f : B→ C such that
1. f (0) = 0, f (1) = 1 and f (−1) = −1;
2. f (a · b) = f (a) · f (b);
3.

∑
ai ∈ NB implies

∑
f (ai) ∈ NC

for all a, b, ai ∈ B.

Remark: The category of bands has all limits and colimits, free
algebras and “quotients”.

An idyll is a band B such that B× = B − {0} and such that
a + b ∈ NB if and only if a equals −b := (−1) · b.



Examples

I A ring R defines the band B = (R, ·) with nullset

NB =
{∑

ai
∣∣∣ ∑ ai = 0 in R

}
and negative one −1. If R is a field, then B is an idyll.

I A hyperfield F defines the idyll B = (F, ·) with nullset

NB =
{∑

ai
∣∣∣ 0 ∈� ai in F

}
and negative one −1. For instance,

K = {0, 1} NK = {n.1 | n , 1} (terminal as idyll)
S = {0,±1} NS = {n.1 + m.(−1) | n = m = 0 or n , 0 , m}
T = R≥0 NT = {

∑
ai | maximum occurs twice}

F±1 = {0,±1} NF±1 = {n.1 + n.(−1) | n ≥ 0}
(initial as both band and idyll)



Categorical landscape

bandsidylls

partial fields

rings

hyperfields

fields

Baker-Bowler theory towards geometry



Part 2. Baker-Bowler theory



B-matroids

Let E = {1, . . . , n} and 0 ≤ r ≤ n. Let B be an idyll.

A Grassmann-Plucker function (of rank r on E) in B is a
non-trivial and alternating map ∆ : Er → B that satisfies the
Plucker relations

r+1∑
k=1

(−1)k ∆(e1, . . . , er−1, fk) ∆(f1, . . . , f̂k, . . . , fr+1) ∈ NB

for all e1, . . . , er−1, f1, . . . , fr+1 ∈ E.

A B-matroid (of rank r on E) is a B×-class M = [∆] of a
Grassmann-Plucker function ∆ : Er → B.



Baker-Bowler theory
Example
1. A matroid M of rank r on E corresponds to the K-matroid

[∆ : Er → K] with

∆(e1, . . . , er) =

1 if {e1, . . . , er} is a basis of M;
0 if not.

2. Oriented matroids correspond to S-matroids.
3. Valuated matroids correspond to T-matroids.

Theorem (Baker-Bowler ’19)
I Cycles: C(M) ⊂ Bn, with cryptomorphic axioms
I Duality: M∗

I Orthogonality: C(M) ⊥ C(M∗)
I Vectors: V(M) = C(M∗)⊥, axioms by [Anderson ’19]
I Minors: M\I/J



Part 3. Band schemes (joint with Baker)



Localizations
Let B be a band. A multiplicative set in B is a subset S of B
such that 1 ∈ S and S · S = S.

The localization of B at S is the monoid

S−1B =
{

a
s

∣∣∣ a ∈ B, s ∈ S},
together with the nullset

S−1NB =
〈∑ ai

1

∣∣∣ ∑ ai ∈ NB
〉

and the negative one −11 .

A prime ideal of B is a subset p of B such that 0 ∈ p,
B · p = p and S = B − p is a multiplicative set in B.

In particular:

B[h−1] = S−1B for h ∈ B and S = {hi}i≥0;

Bp = S−1B for p ⊂ B prime and S = B − p.



The spectrum
Let B be a band. The spectrum of B is the set

SpecB = {prime ideals p ⊂ B},

together with the topology generated by the principal opens

Uh = {p ⊂ B | h < p} (for h ∈ B).

Theorem
There exists a uniquely determined sheaf OX in bands on
X = SpecB (the structure sheaf) such that
I OX(Uh) = B[h−1] for all h ∈ B;
I OX,p = Bp for all p ∈ X.

A band scheme is a topological space X together with a sheaf
OX in bands that is locally isomorphic to the spectra of bands.

There is a natural notion of morphisms of band schemes.



Examples of band schemes (over F±1 )

〈T〉 〈0〉

A1 = SpecF±1 [T]

〈0〉Gm

〈0〉 〈T−1〉

A1

[1 : 0] [1 : 1] [0 : 1]P1

generic point

line line

line

point

point point

P2

Similarly, there are projective spaces Pn for all n > 0 over F±1 .

More generally, for every fan ∆ of cones in Rn, there is a toric
band scheme Σ(∆) over F±1 .



Base extension to Z and descent to F±1

Let B be a band. The base extension of B to Z is the ring

B+
Z = Z[B]/〈NB〉.

This extends to the base extension for band schemes:

X =
⋃

SpecBi 7−→ X+
Z =

⋃
SpecB+

i,Z.

Conversely, the closed immersion X → Y+
Z of a scheme X into

the base extension of a band scheme Y defines a band model X
of X together with a closed immersion X → Y.



Part 4. Moduli spaces of matroids
(joint with Baker)



Matroid bundles and their moduli space

The Plucker embedding Gr(r, n)Z ↪→ PNZ (for N =
(n
r

)
− 1) defines

the band model Gr(r, n) ↪→ PN .

There is a natural extension of B-matroids to matroid bundles
over a band scheme X (in terms of Grassmann-Plucker
functions), which poses the moduli functor

X 7−→
{
matroid bundles on X

}
.

Theorem (Baker-L ’21)
Gr(r, n) is the fine moduli space of matroid bundles.
As a consequence, there is a canonical bijection

Gr(r, n)(B) −→
{
B-matroids

}
for every idyll B.



Part 5. Flag matroids with coefficients
(joint with Jarra)



Flag B-matroids
Let 0 ≤ r1 ≤ · · · ≤ rs ≤ n and r = (r1, . . . , rs). Let Fl(r, n)Z be the
flag variety of type r flags in n-space. The closed immersion

ηZ : Fl(r, n)Z −→
s∏
i=1

Gr(ri, n)Z

defines the band model

η : Fl(r, n) −→
s∏
i=1

Gr(ri, n).

Definition
Let B be an idyll. A flag B-matroid is a sequence (M1, . . . ,Ms)
of B-matroids that corresponds to a point in the image of

ηB : Fl(r, n)(B) −→
s∏
i=1

Gr(ri, n)(B).

Example
Flag matroids correspond to flag K-matroids.
Valuated flag matroids (after [Brandt-Eur-Zhang ’21]) correspond
to flag T-matroids.



Baker-Bowler theory for flag matroids

Theorem (Jarra-L ’22)
Let B be an idyll and M = (M1, . . . ,Ms) a sequence of B-matroids
of ranks r = (r1, . . . , rs) on E. Then we have:
I Cryptomorphic descriptions:

1. M ∈ Fl(r,E)(B)
2. C(M∗i ) ⊂ V(M∗j ) for all 1 ≤ i ≤ j ≤ s
3. given Mi = [∆i] for i = 1, . . . , s, we have

rj+1∑
k=1

(−1)k ∆i(e1, . . . , eri−1, fk) ∆j(f1, . . . , f̂k, . . . , frj+1)

for all i ≤ j and e1, . . . , eri−1, f1, . . . , frj+1 ∈ E
I Duality: M∗ = (M∗s , . . . ,M∗1 )
I Orthonality: C(M∗i ) ⊥ C(Mj) for i ≤ j
I Minors: M\I/J = (M1\I/J, . . . ,Ms\I/J)



Part 6. Applications



Application 1 (with Baker)
A (usual) matroid M corresponds to a K-rational point of
Gr(r, n), which comes with a “residue field” kM .
The foundation of M is an idyll FM derived from kM .

Theorem (Baker-L ’21)
M is representable over a (partial) field K (resp. is orientable)
if and only if there exists a morphism FM → K (resp. FM → S).
Further results:
1. Structure theorem for FM of M without minors of types

U(2, 5) and U(3, 5), with manifold consequences.
Sample application: let XM(K) be the variety of rescaling
classes of M over a field K. Then for all ternary M,

# XM(F4) · # XM(F5) = # XM(F8).

2. Computational methods for FM , Macaulay2 package by Chen
and Zhang.



Application 2 (with Jarra)

We gain the notion of a strong map f : M → N of B-matroids in
terms of the cryptomorphic descriptions:
1. f (C(M)) ⊂ V(N);
2. for all e1, . . . , erk(M)−1 ∈ EM and f1, . . . , frk(N)+1 ∈ EN , we have

rk(N)+1∑
k=1

(−1)k ∆M(e1, . . . , erk(M)−1, fk)

· ∆N(f1, . . . , f̂k, . . . , frk(N)+1) ∈ NB.

Problem: Strong maps are in general not composable.
Thus we might need to impose additional requirements.



Application 3 (with Baker / Jarra)
Let B be a band with topology, e.g.
I R with the usual real topology;
I T = R≥0 with the real topology;
I S with the topology generated by {1} and {−1}.

Then Fl(r,E)(B) inherits the fine topology (after [L-Salgado ’16]).

We get:
I Fl(r, n)(R) is the real flag manifold (of type r flags in Rn).
I Gr(r, n)(T) is the Dressian (of tropical linear spaces in Tn).
I Gr(r, n)(S) is the MacPhersonian (of oriented matroids).
I ΩSn =

∐
r

Fl(r, n)(K), with face relation by omitting entries:

Gr(1, 3) Fl(1, 2; 3) Gr(2, 3)



Face relations for flags on E = {1, . . . , 4}

Fl(1, 2, 3; 4)

Fl(1, 2; 4) Fl(1, 3; 4)

Fl(2, 3; 4)

Gr(1, 4)

Gr(2, 4) Gr(3, 4)



Revisited: the combinatorial flag variety ΩS3

[ 1 1 0
0 0 1

]

[ 1 0 0
0 0 1

][ 1 0 0
0 1 0

]
[ 0 0 1
0 1 0

]

[ 1 0 0
0 1 1

]
[ 1 0 1
0 1 0

] [ 1 1 0
0 1 1

]

[0 0 1]

[1 0 0]

[0 1 0]

[0 1 1]

[1 1 1]

[1 0 1]

[1 1 0]

ΩS3 =̂ K-points of
∐
r

Fl(r,E)

[ 1 0 0
0 0 1

][ 1 0 0
0 1 0

]
[ 0 0 1
0 1 0

]
[0 0 1]

[1 0 0]

[0 1 0]

Coxeter complex of S3
=̂ closed points of

∐
r

Fl(r,E)



Excerpt from “Coxeter matroids” by Borovik, Gelfand
and White

Many geometries over fields have formal analogues which
can be thought of as geometries over the field of 1 element.

[...]

In general, the Coxeter complexW of a Coxeter group W
is a thin building of type W and behaves like the building
of type W over the field of 1 element.

However, the Coxeter complex has a relatively poor struc-
ture. In many aspects, ΩW and Ω∗W are more suitable
candidates for the role of a “universal” combinatorial geo-
metry of type W over the field of 1 element.
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